BOND システム

完全自動IHCおよびISH染色システム

BOND 7 ユーザーマニュアル

(中国では使用しないこと)

 ϵ

法的通知事項

このマニュアルは、BOND-III、BOND-MAX、BOND-PRIME、およびBONDシステムコントローラーに適用されます。

処理モジュールの中には、一部の地域では使用できないものもあります。

登録商標

Leica およびLeicaのロゴは、Leica Microsystems IR GmbHの登録商標であり、ライセンスに基づき使用しています。BOND システム、BOND-III、BOND-MAX、BOND-PRIME、BOND-ADVANCE、Covertile、Bond Polymer Refine Detection、Bond Polymer Refine Red Detection、Parallel Automation、Compact Polymer、Oracle は、Leica Biosystems Melbourne Pty Ltd ACN 008 582 401 の登録商標です。その他の商標は、それぞれの所有者に帰属します。

著作権

Leica Biosystems Melbourne Pty Ltd は、この文書および関連する任意のソフトウェアについて著作権を有しています。書面による許可なしに、いかなる文書やソフトウェアの全体およびその一部を、複写、複製、翻訳、または、電子的および機械的に読み取れる形式に変換することは、法律で禁じられています。

著作権 © 2023 Leica Biosystems Melbourne Pty Ltd

製品識別情報

Doc. 49.7556.516 A04

製造業者

Leica Biosystems Melbourne Pty Ltd 495 Blackburn Rd Mt. Waverley VIC 3149 Australia

全ューザーを対象とした重要情報

このマニュアルには、BOND システムの使用方法に関する重要な情報が含まれています。Leica Biosystems の製品 およびサービスに関する最新情報は、www.leicabiosystems.comを参照してください。

Leica Biosystemsの方針として、継続的な改善に努めるため、製品仕様が予告なく変更されることがあります。

本書では以下の用語が使用されます。

- Leica Biosystems Leica Biosystems Melbourne Pty Ltdを意味します。
- BOND システム Leica Biosystemsのプラットフォームで、BOND-III、BOND-MAX、BOND-PRIMEなどが含まれます
- BOND-III 自動化されたIHCおよびISH染色装置の一種
- BOND-MAX 自動化されたIHCおよびISH染色装置の一種
- BOND-PRIME 自動化されたIHCおよびISH染色装置の一種
- BOND システムソフトウェア BOND-III、BOND-MAX、またはBOND-PRIMEシステムを設定して操作するためのソフトウェアアプリケーション

対象ユーザー

BONDシステムの対象ユーザーは適切なトレーニングを受けた施設の担当者です。

BOND 処理モジュールの操作者は、操作を行う前に、本書に従って使用するための十分なトレーニングを受け、発生する可能性のあるハザードと危険を伴う手順を十分に理解しておく必要があります。適切な訓練を受けた担当者のみが、本書で指示された範囲内において、処理モデュールのカバーや部品を取り外すことができます。

インストールと修理

なおインストールと修理は、必ずLeica Biosystems指定の有資格のサービス担当者が実施してください。

本製品が指定の用途に使用されなかった場合、また、本書の指示を無視して操作された場合、保証が無効になります。本器の不正使用や誤用の結果生じた損傷は、保証の対象となりません。Leica Biosystems は、いかなる損害に対しても責任を負いません。

重大なインシデントの報告

患者またはユーザーが死亡に至った、または死亡に至る可能性のある重大なインシデントの発生、あるいは患者またはユーザーの健康状態の一時的または永続的な悪化については、Leica Biosystems の各担当者および関連する地域の規制当局に報告する必要があります。

Leica Biosystemsプロトコール

BOND システムには、あらかじめ定義されたLeica Biosystems プロトコールがセットされており、これらは編集、削除できません。あらかじめ定義されたプロトコールとは、Leica Biosystemsが検証したプロトコールです。ただし、あらかじめ定義された既存のプロトコールをコピーして編集し、カスタマイズしたプロトコールを作成することもできます。カスタマイズしたプロトコールはすべて、現地の施設の手順や要件に従って検証する必要があります。プロトコールを作成して保存しても、それが使用に適しているとは限りません。操作の原理や性能特性については、該当するアッセイの使用説明書(IFU)を確認してください。

ユーザーデータのセキュリティとプライバシーに関する声明

Leica Biosystemsは、個人データのセキュリティとプライバシーを尊重し、その保護に取り組んでいます。以下のLeica Biosystemsプライバシー通知では、当社が収集、使用、保持する可能性のある個人データについて説明しています。

プライバシー通知

ライセンシーは、個人データを処理する前に、患者およびその他のデータ主体に対して必要なすべての通知を行い、必要なすべての同意を得ることによって、BONDシステム(BOND-ADVANCEが含まれますが、これに限定されない)を使用して個人データを処理する際に、適用されるすべてのデータ保護およびプライバシー法を遵守するものとします。

BONDコントローラーでは、以下の個人データがデータベースに保存されます:

- 患者名
- 医師名
- 受入番号
- 医師のコメント
- 患者 コメント
- スライドのコメント
- ケースコメント
- ユーザーアカウントの詳細
- 役職名
- スライドの画像
- LISイベントのコメント
- 装置の画像

以下のBONDレポートには、日常的にPHIが含まれる可能性があります:

- 処理イベント
- 処理詳細
- ケースレポート
- 簡単なスライド履歴
- データのエクスポート
- スライド設定のサマリー

Leica Biosystems 製品に関するお問い合わせ

保守作業や修理、サポートについては、最寄りのLeica Biosystems代理店にご連絡いただくか、www.leicabiosystems.comをご覧ください。

改訂履歴

改訂番号	発行日	対象セクション	内容
A04	2023年1月	全セクション	BOND 7 ソフトウェアが動作している BOND システム用の新バージョン。
A01 - A03	-	-	未公開。

一般警告事項

警告とは、人身傷害につながる危険性、および、患者検体を紛失、損傷、または取り違える危険性を通知するものです。人身傷害、損害、患者の検体の紛失または取り違え、および装置の損傷を避けるために、あらゆる安全対策を遵守してください。

警告では、黒色の境界線で黄色の背景の記号が使用されます。

下に一般 BOND システム 警告事項を示します。その他の警告事項は、本書の該当箇所に表示されています。

処理モジュールの操作

試薬とスライドの汚染を防くために、処理モジュールはできるだけ埃や微粒子のない清潔な環境で操作してください。

処理 モジュールを確実に正しく操作するために、色分けされた名前のラベルに従い、キャビティ内の正しいステーションに各バルク試薬 コンテナを配置します。これを怠ると、染色に支障を来すことがあります。

詳細については、2.2.7 バルク容器キャビティを参照してください。

毎日始業時に、バルク容器のレベルを確認して、必要に応じて空にするかまたは補充します(もっと頻繁に必要な場合 - 12.2.1 コンテナのレベルを確認を参照)。これを怠ると、結果として処理中にコンテナを取り外すことになり、処理が一時停止し、染色に支障を来すことがあります。

BOND-MAXで、処理中にバルク容器を充填する必要がある場合、必ずプロトコールステータス画面を確認し、そのコンテナが使用されていないか、またはすくに使用されないことを確認します。これを怠ると、スライド処理に支障を来すことがあります。充填した後、コンテナを直ちに元の位置に戻します。次を参照:12.2.2.5処理中。このような状況を回避するために、プロトコールごとにバルク容器のレベルを確認してください(12.2.1 コンテナのレベルを確認を参照)。

BOND-IIIのバルク容器は、取り外さずに充填できます。次を参照: 12.2.2.1 バルク試薬の再充填 – BOND-III。このような状況を回避するために、毎日バルク容器のレベルを確認してください(より頻繁に必要な場合 - 12.2.1 コンテナのレベルを確認を参照)。

BONDは、機能し、使用目的を果たすうえでネットワークアクセスを必要としません。悪意のあるアクセスや不正なアクセスを防ぐには、ネットワーク/インフラストラクチャに接続せずに、BONDをインストールしてください。

ネットワーク接続が必要な場合は、ファイアウォールで保護された仮想ローカルエリアネットワーク(VLAN)にBONDを接続することをお勧めします。または、標準の操作手順に従って、独自のネットワークセキュリティメカニズムを実装して検証することもできます。

詳細については、BOND5.1+(49.6062.811)の情報システムガイドを参照してください。

BOND コントローラーにマルウェアが感染すると、操作中に処理モジュールの機能障害などの予期しない動作を引き起こす恐れがあります。USB 記憶装置をBOND コントローラーに接続する前に、ウイルスに感染していないことを確認してください。Leica Biosystems はウイルス対策ソリューションをプリインストールしていません。詳細については、Leica Biosystems の現地代理店にお問い合わせください。

コントロール

確実に各スライドが適切な染色結果を得られるように、適切な施設管理方法を制定して維持する必要があります。Leica Biosystems では、テストの組織と同じスライド上に適切なコントロール組織を配置するよう強くお勧めします。

化学的ハザード

免疫染色用試薬やin situ ハイブリダイゼーション用試薬の中には、有害なものがあります。 続行する前に適切なトレーニングを受けるようにしてください。

- 試薬の取り扱い時や処理モジュールのクリーニング時には、ラテックスまたはニトリル製の手袋、ゴーグル、およびその他の適切な保護服を着用します。
- 試薬や凝縮液を取り扱ったり廃棄する際には、施設現場に適用される手順や法規を遵守してください。

キャップの周りに試薬が付いたままにしておくと、試薬容器が移動中に傾くことがあります。 試薬容器を開く際には、必ず認定された保護用眼鏡、手袋および防護服を着用してください。

危険性のある試薬がスライド染色ユニットの周囲に蓄積されてスライドトレイを汚染することがあります。スライドトレイを扱うときには、必ず適切な保護服と手袋を着用します。

BOND処理モジュールで使用される試薬の中には、発火性のものがあります。

- 処理 モジュールの近くに炎や発火源を置かないでください。
- バルク容器を再充填または空にした後はキャップがきちんと閉まっていることを確認してください。

処理 モジュールにはヒーターや加熱面があるので、その付近に可燃物を置くと引火の危険性があります:

- ヒーターの上やその付近に可燃物を置かないでください。
- 処理モジュールの加熱面の上に可燃物を置かないでください。
- バルク容器を再充填または空にした後はキャップがきちんと閉まっていることを確認してください。

メカニカルハザード

処理モジュールのフタを閉めるときは、手を挟んで怪我をしないよう注意してください。

メインロボットの操作中、吸引プローブ、シリンジポンプ、バルク溶液ロボット(BOND-III)が突如高速で動く場合があり、ケガの原因となる可能性があります。

- 処理中は処理モジュールのフタを開けようとしないでください。
- フタが開いたときに処理 モジュールの動作 を停止 するインターロックを解除 しないでください。
- 操作中、シリンジポンプが所定の位置にあることを確認してください。

スライド染色部品とその周辺装置に触らないでください.高温になっている場合があり、重度の火傷を負うおそれがあります。動作停止後20分間放置して、スライド染色ユニットとその周辺装置の温度が下がるまでお待ちください。

処理 モデュールを修理 または処分 するために長距離の移送をする際や輸送する際には、カスタマーサービスにご連絡 ください。処理 モジュールは重く 一人で移動できるように設計されていません。

通常の操作時には、シリンジドア(BOND-MAX)が閉じていること、またはシリンジカバー (BOND-III)が取り付けられていることを確認してください。シリンジまたはシリンジのフィッティングが緩んでいる場合には、加圧された試薬が噴き出すことがあります。

処理モデュールのフタが開いてから、5秒以上メインロボットやバルク溶液ロボットが動作し続ける場合には、直ちにカスタマーサービスにご連絡ください。

処理モデュールがオンになっているときはメインロボットアームは取り外さないでください.ロボットの配置が狂って染色の効果が低下する恐れがあります。

ロボットが動いた場合には、処理モジュールの電源をオフにして、30秒待ってから再度初期化します。

クリーニングまたは メンテナンス作業を行うときは、必ず処理モデュールのスイッチをオフにしてください(ただし、吸引プローブのクリーニングなどの自動クリーニング作業を除く。

BOND-IIIバルク液ロボットは、ユーザーがクリーニングのためにアクセスできるようにスライド染色部品沿いを動きます。この手順は、この危険性について熟知し適切なトレーニングを受けたオペレーターのみが実行できます。

可動部を含むスライド染色部品は、重度の傷害の原因となることがあります。処理モジュールの操作時には、スライド染色ユニット開口部に指を挟んで怪我をしないよう注意してください。

スライド染色 ユニットを手動でロック解除しようとする前に、以下の手順に従ってください。処理 モデュールの電源 スイッチを切り、主電源を切り、電源プラグをコンセントから抜きます。

シリンジポンプモジュール(BOND-III) は重量があり、放すと落下する可能性があります.この手順は、この危険性について熟知し適切なトレーニングを受けたオペレーターのみが実行できます。

処理モジュールを持ち上げる際には、BOND-IIIの後部カバーパネルに2本ある黒色のハンドルを使用しないでください。

電気的ハザード

処理モデュールのカバーを取り外したり、内部の部品に触れたりしないでください。BOND 処理モジュール内には危険な高圧電源があるため、Leica Biosystems が認定した資格を持つ整備担当技術者のみが作業を行うことになっています。

処理 モデュールの動作電圧 を変更してはなりません。処理 モジュールを不適切な電源電圧 に接続すると、重大な損傷を引き起こす原因となります。設定を変更するには、カスタマーサービスにご連絡 ください。

処理 モジュールは接地端子付きの電源 コンセントに接続し、また操作者が処理 モジュール を動かすことなく直 ちに電源 ケーブルを抜くことができる場所に配置します。

ヒューズをバイパスしたり短絡させてはなりません。

ヒューズを交換する前に、処理モジュールをオフにして電源コードを外します。ヒューズは標準部品とのみ交換し、ヒューズが何度も切れる場合にはカスタマーサービスにご連絡ください。

一般的注意

注意とは、BOND装置の損傷につながる危険性、および作業員を危険にさらす有害事象につながる可能性のある危険性を通知するものです。

注意では、黒色の境界線で白色の背景の記号が使用されます。

下に一般BONDシステム警告事項を示します。その他の警告事項は、本書の該当箇所に表示されています。

設置ハザード

処理 モジュールの後部 カバーにある通気口 をふさがないでください。また、シリンジドア (BOND-MAX) 上 にある通気口 をふさがないでください)。

運転時のハザード

ラベル全体がスライドの四隅の内側に収まるように配置してください。また粘着部分が露出していると、スライドラベル(およびスライド)がCovertileやその他の装置に張り付いて、スライドの損傷の原因となります。

損傷する可能性があるため、小型の液体レベルセンサーキャップをバルク容器(BOND-MAX)から取り外さないでください。バルク容器は、大型の充填/空キャップからのみ廃棄したり再充填します。

取り外し可能な部品は、全て手作業でクリーニングしてください.損傷を避けるため、部品の洗浄には、自動食器洗浄機を使用しないでください。クリーニングの際は、強洗剤、研磨用洗剤、またはきめの粗い布や、研磨布は絶対に使用しないでください。

綿棒の先端が外れて詰まりの原因となることがありますので、洗浄ブロックの穴の内側やスライド染色ユニットのウィッキングポストをクリーニングする際には、Qチップなどの綿棒を使用しないでください。

バルク容器を無理に所定の位置に戻さないでください。容器および液体センサーが損傷することがあります。

破損したスライドは使用しないでください。処理モデュールにロードする前に、スライドトレイ上に全てのスライドが正し、配置されていること、また、全てのCovertileが正し、配置されていることを(参照 2.6.2 BOND Universal Covertiles) 確認します。

処理 モデュールでの処理 を開始 または初期化 する前に、シリンジモジュール(BOND-III) が完全に閉じていることを確認してください(12.4.1 スライド染色 ユニットを手動でロック解除 を参照)。処理中にシリンジが損傷 することがあります。

上部プレートのクリーニングまたは取り外しを行う前に、バルク溶液ロボット(BOND-III)が処理モジュール後部の所定位置にあり、スライド染色ユニットに沿った位置にないことを確認してください。

試薬ハザード

互換性のない溶液同士を接触させると、染色が不十分になったり、処理モデュールに損傷を生じる原因となります。溶液の互換性の有無については Leica Biosystems までお問い合わせください。

BOND 処理 モジュールでは、キシレン、クロロホルム、アセトン、強酸(例:20% HCI)、強アルカリ(例:20% NaOH)を使用しないでください。これらの化学薬品が BOND 処理 モジュールの上や近くにこぼれた場合には、処理 モジュールのカバーを損傷しないよう直ちに 70% アルコールで拭き取ってください。

BOND およびBOND-III処理 モジュールではBOND-MAXDewax Solutionのみを、またはBOND-PRIME 処理 モジュールではBOND-PRIMEDewax Solutionのみを使用してください。キシレン、キシレン 代替品 およびその他の試薬を使用すると、BOND システムの部品の劣化や液漏れの原因となることがあります。

規制に関する注意事項

使用目的

BOND システムは、顕微鏡用 スライドに作成 された病理標本を染色するための臨床プロトコール を自動化するものです。続いて顕微鏡用スライドは、診断を補助するために、有資格の医療 従事者によって解釈されます。

FCC準 拠

本装置はテストの結果、FCC規則パート15サブパートBに規定されたクラスAのデジタル電子機器の制限値に 適合していることが確認されています。これらの制限値は、本装置を商用環境で使用した場合に発生する 有害な妨害に対して適切に保護するためのものです。本装置は無線周波エネルギーを生成・使用し、放 射する可能性があります。取扱説明書に従って設置し、使用しない場合、無線通信に対して有害な妨害 を引き起こす可能性があります。住居地域でこの装置を運転すると、ユーザー自身の費用負担により是正 する必要のある有害な干渉の原因となることがあります。

基準を遵守するには、機器に付属しているケーブルのみを使用してください。

警告:Leica Biosystemsによって明示的に承認されていない変更または改造を行った場合、 本装置を操作するユーザーの権限が取り消される可能性があります。

CEマーク

CEマークは、メーカーによる適合宣言に記載されているとおり、適用されるEU指令を遵守していることを示します。

業務用体外診断装置に関する指示

IVD機器はIEC 61326パー ト2-6の放射 および耐性に関する要件に準拠しています。

機器を運転する前に、電磁環境について評価しておく必要があります。

強い電磁放射源(例、遮蔽されていない意図的なRF源)が適切な操作を妨害する可能性があるため、電 磁放射源の近くで本装置を使用しないでください。

警告:本装置は、CISPR 11クラスAに従って設計および試験されています。家庭内環境では 無線通信への妨害の原因となることがあり、妨害を軽減する措置を取る必要が生じる場合

コンピュータ規制要件: UL記載(UL 60950)、IEC 60950承認

注意: 連邦法により、本機器の販売は免許を有する医療従事者によるもの、またはその指示によるものに制限されます。

CISPR 11での機器の分類(EN 55011)

本装置は、CISPR 11(EN 55011)に基づきグループ1クラスAに分類されます。グループとクラスの説明は以下のとおりです。

グループ - グループ 2の機器に分類されない全ての機器に適用されます。

グループ2・材料の処理または検査/分析のために、周波数範囲が $9\,kHz\sim400\,GHz$ の無線周波数が意図的に生成されて使用されるか、電磁放射、誘導結合および/または容量結合の形式でのみ使用される全てのISM RF機器に適用されます。

クラスA - 家庭用建物に供給する低電圧電源ネットワークに直接接続された家庭用施設および事業所を除く全ての施設での使用に適した全ての機器に適用されます。

クラスB-住宅および居住目的に使用される建物に給電する低電圧電力網に直接接続された居住施設および建物での使用に適したすべての装置に適用されます。

定義

ISM: 工業、科学および医療(機器)

RF:無線周波数

記号の用語集

このセクションでは、製品のラベリングに使用される規制および安全記号について説明します。

規制記号

Leica Biosystems製品に使用されている規制記号の説明。

この用語集では、該当する基準に示されている記号の画像を提供していますが、一部の記号の色が異なる場合があります。

以下は、製品のラベリング消耗品、機器、およびその意味で使用されている記号のリストです。

ISO 15223-1

医療機器-医療機器ラベル、ラベリング、提供情報に使用される記号-第1部:一般要件。

シンボル		参照	内容
	ISO 15223-1	5.1.1	製造業者 医療機器の製造元を示します。
EC REP	ISO 15223-1	5.1.2	欧州代理人を示します。
M	ISO 15223-1	5.1.3	製造年月日 医療機器が製造 された日付を示します。
	ISO 15223-1	5.1.4	使用期限(有効期限) 医療機器をそれ以降使用できない日付を示します。
LOT	ISO 15223-1	5.1.5	バッチコード(ロット) バッチまたはロットを識別するための製造元のバッチコードを示します。
REF	ISO 15223-1	5.1.6	カタログ番号 / 参照番号 医療機器を識別するための製造元のカタログ番号を示します。
SN	ISO 15223-1	5.1.7	シリアル番号 特定の医療機器を識別するための製造元のシリアル番号を示します。
	ISO 15223-1	5.1.8	輸入業者 医療機器を欧州連合に輸入したエンティティを示します。

N N 19 N	그리그산 (그리 티)	⇔™	il no
シンボル	規格/規則	参照	内容
	ISO 15223-1	5.1.9	供給者 医療機器を現地に配送したエンティティを示します。
I	ISO 15223-1	5.3.1	壊れもの、取扱注意 慎重に取り扱わないと破損または損傷する可能性のある医療機器 を示します。
7	ISO 15223-1	5.3.4	水ぬれ防止 輸送パッケージを雨に濡らさずに乾いた状態に保つ必要があることを 示します。
	ISO 15223-1	5.3.7	温度制限 医療機器を露出させても安全な温度制限を示します。
	ISO 15223-1	5.4.2	再使用禁止 1回の使用または1人の患者に対する1回の処置での使用を目的とした医療機器を示します。
[j	ISO 15223-1	5.4.3	使用説明書を参照 ユーザーが使用説明書を参照する必要があることを示します。
Ŵ	ISO 15223-1	5.4.4	注意 さまざまな理由で医療機器本体に表示できない警告や注意などの 重要な注意事項について、ユーザーが使用説明書を参照する必要 があることを示します。
IVD	ISO 15223-1	5.5.1	体外診断用医療機器 体外診断用医療機器 としての使用を目的とする医療機器を示します。

ISO 7000

機器に使用する図記号-登録記号。

シンボル	規格/規則	参照	内容
	ISO 7000	1135	リサイクル このマーク付きの品目やその材料が回収またはリサイクルの対象であることを示します。
P	ISO 7000	1640	技術マニュアル、サービスマニュアル ハンドブックの保管場所、または機器の保守点検手順に関連する情報を識別します。この記号が配置された場所の近くで機器を保守点検する際にサービスマニュアルまたはハンドブックを注意深く調べる必要があることを示します。
\gtrsim	ISO 7000	2594	通気口 外気を内部環境に入れるためのコントロールを識別します。
•	ISO 7000	3650	USB ユニバーサルシリアルバス(USB)の一般要件を満たしているポートまた はプラグを識別します。機器がUSBポートに接続されることまたはUSB ポートと互換性があることを示します。

IEC 60417

機器に使用する図記号。

シンボル	規格/規則	参照	内容
	IEC 60417	5007	オン 少なくとも主電源スイッチまたはその位置と、安全に関わるすべての 場合について、主電源への接続を示します。
	IEC 60417	5008	オフ 少なくとも主電源スイッチまたはその位置と、安全に関わるすべての 場合について、主電源からの切断を示します。
	IEC 60417	5009	スタンバイ 機器 をスタンバイ状態 にするためにオンにするスイッチまたは スイッチ 位置を識別します。
	IEC 60417	5016	ヒューズ ヒューズボックスまたはその位置を識別します。
	IEC 60417	5019	保護アース、保護接地 異常発生時の電気ショックから保護するための外部導体への接続 を目的とする端子、または保護アース(接地)電極の端子。

シンボル	規格/規則	参照	内容
\sim	IEC 60417	5032	単相交流 機器が交流にのみ対応していることを定格銘板に示し、該当する 端子を識別します。
	IEC 60417	5134	静電気敏感性機器 静電気敏感性機器、または静電放電への耐性がテストされていない機器またはコネクタが含まれるパッケージ。
몲	IEC 60417	5988	コンピュータネットワーク コンピュータネットワーク自体を識別するか、またはコンピュータネット ワークの接続端子を示します。
	IEC 60417	6040	警告:紫外線放射 製品の筐体内にオペレーターにとってリスクとなりうる強度の紫外線が存在することの警告。開ける前に紫外線ランプをオフにしてください。 保守点検中は紫外線放射から眼と皮膚を保護してください。
	IEC 60417	6057	注意:可動部 可動部に近付かないよう指示する注意事項。
i	IEC 60417	6222	情報、一般機器(多機能コピー機など)のステータスを調べるためのコントロールを識別します。

その他の記号およびマーキング

4 • 10 •	HC 2 44 1		
シンボル	規格/規則	参 照	内容
$R_{\!$	21 CFR 801.15 (c)(1)(i)F		処方箋が必要 米国食品医薬品局により、「注意:連邦法により、本機器は許可を 受けた医療従事者の注文またはその注文による販売に制限されてい ます。」の代替として認められています。
CE	機器の適合宣言には、システムが適合している指令の一覧が示されます。		欧州適合 機器の適合宣言には、システムが適合している指令の一覧が示されます。
X	指令2012/19/ EC EU:廃電気 電子機器		電気電子機器廃棄物(WEEE)指令 電子製品を分別せずに廃棄することはできません。回収やリサイクルのために別の回収施設に送付する必要があります。
	(WEEE)		このラベルが付いている場合、以下のことを示します。
			• この機器は2005年8月13日以降に欧州市場で販売された。
			• この機器は欧州連合のいかなる加盟国の地方自治体の廃棄物回収システムでも廃棄できない。
			顧客は適切な除染および電気機器の安全な廃棄に関するすべての法律を理解して従う必要がある。
	AS/NZS 4417.1		規制準拠マーク(RCM) オーストラリアおよびニュージーランドに対するオーストラリア通信メディア庁(ACMA)の要件(安全およびEMC)への準拠を示します。
	中華人民共和 国電子工業規 格SJ/T11364		特定有害物質使用制限(RoHS 2) この電子情報製品には特定の有毒物質または有害物質が含まれており、その環境保護使用期限内であれば安全に使用できることを示します。ロゴの真ん中の数字は、その製品の環境保全使用期間(年単位)を示しています。外側の円は、製品がリサイクル可能であることを示します。このロゴは、環境保護使用期限が切れたら、製品を直ちにリサイクルする必要があることも示します。ラベルの日付は製造日を示します。
	中華人民共和 国電子工業規 格SJ/T11364		特定有害物質使用制限(RoHS 2) この電子情報製品には有害物質が含まれておらず、GB/T 26572で定められた濃度限度を超えていないことを示します。リサイクル可能な環境に優しい製品です。
F©	タイトル47米国 連邦規則集 パート15		連邦通信委員会(FCC) 本製品は、FCC規則の第15部に従って、制限に準拠していることが試験で確認されています。

シンボル	規格/規則	参 照	内容
C UL US	該当せず		Underwriters Laboratory(UL) 認証マーク リスト製品は、米国およびカナダの両方の安全要件に準拠しているこ とがUnderwriter Laboratoriesにより認証されています。
C B ®	CSAインターナ ショナル		リスト機器(CSAグループ試験実施機関) リスト製品は、米国およびカナダの両方の安全要件に準拠していることがCSAグループにより認証されています。
C C UNTERTER	該当なし		リスト機器(Intertek試験実施機関) リスト製品は、米国およびカナダの両方の安全要件に準拠していることがIntertek試験実施機関により認証されています。
RH 10% - 95%	該当せず		相対湿度範囲 輸送時および保管時の相対湿度の許容限度(上限および下限)を 示します。この記号とともに該当する相対湿度の限度が示されます。
A	該当せず		未接続ポート 本製品のシリンジポンプに未接続ポートがあります。

安全記号

Leica Biosystems製品に使用されている安全記号の説明。

ISO 7010

図記号-安全色および安全標識-登録安全標識。

シンボル	規格/規則	参照	内容
	ISO 7010	W001	一般警告事項 さまざまな理由で医療機器本体に表示できない警告や注意などの 重要な注意事項について、ユーザーが使用説明書を参照する必 要があることを示します。
*	ISO 7010	W004	警告:レーザー光線 レーザーハザード。重度の眼障害を生じるおそれがあります。レー ザー光線を直視しないでください。
	ISO 7010	W009	警告:バイオハザード バイオハザード。バイオハザードへの曝露のおそれがあります。 曝露 を防止するために、付属文書の指示に従ってください。
4	ISO 7010	W012	注意:電気ショックのリスク 電気ハザード。電気ショックのリスクのおそれがあります。人身傷害または機器損傷を防止するために、付属文書の指示に従ってください。

シンボル	規格/規則	参照	内容
	ISO 7010	W016	警告:有害物質 毒性ハザード。化学薬品に関する適切な取扱手順に従わない場合、健康に重度の影響を与えるおそれがあります。試薬を取り扱う時は、防護手袋と保護用眼鏡を着用してください。
	ISO 7010	W017	警告:高温面 高温ハザード。高温面に触れると火傷します。この記号が付いている部品は触らないでください。
	ISO 7010	W020	警告:頭上の障害物 頭上の障害物。頭上の障害物にぶつかったり、足を踏み入れたりしないように注意してください。
	ISO 7010	W021	警告:可燃性物質 正しい安全上の注意を怠ると可燃性の試薬に着火することがあります。適切な取り扱い手順に従わない場合は、可燃性物質が発火するおそれがあります。
	ISO 7010	W022	警告:シャープな要素 シャープな要素。鋭利な要素(針、刃など)による怪我を避けるよう に注意してください。
	ISO 7010	W023	警告:腐食性物質 腐食性物質による化学的ハザード。適切な取り扱い手順に従わない場合は、健康に重度の影響を与えるおそれがあります。必ず保護服と手袋を着用。漏れた場合は、標準的な施設手順に従って直ちに除去してください。
	ISO 7010	W024	警告:手挟み 衝突ハザード。機器の機械部分を閉じるときに手や身体の一部を 挟むおそれがあります。
	ISO 7010	W072	警告:環境ハザード 環境ハザード。環境ハザードを引き起こす可能性のある物質または 混合物。

目次

目次	
1 は じめ に	28
1.1システムの概 要	28
1.2ヘルプについて	29
1.3第 一 ステップ	30
1.4プロトコールの実行 - ワークフロー	31
1.4.1BOND-III ŁBOND-MAX	31
1.4.2BOND-PRIME	33
2ハードウェア	34
2.1BOND システム	35
2.1.1BOND 付属品	
2.2BOND-IIIおよびBOND-MAX処理 モデュール	37
2.2.1メインコンポーネント	37
2.2.2処理 モデュールの初期化	42
2.2.3フタ	42
2.2.4ロボットアーム とIDイメージャー	43
2.2.5スライド染色 ユニット	43
2.2.6前 面 パネル	45
2.2.7バルク容器 キャビティ	48
2.2.8吸 引 プローブ	55
2.2.9洗浄 ブロックとミキシング ステーション	55
2.2.10バルク溶液 ロボット(BOND-IIIのみ)	56
2.2.11シリンジ	58
2.2.12電源 スイッチ	59
2.2.13後部 カバー	59
2.3BOND コントローラーとターミナル	62
2.4ハンディバーコードスキャナー	63
2.4.1ハンディバーコードスキャナーの使用方法	63
2.5スライドラベラー	64
2.6付属備品	65
2.6.1スライド	65

2.6.2BOND Universal Covertiles	66
2.6.3試薬システムと容器	68
2.7処理モジュールの移動	69
2.8装置の停止 と廃棄	69
3 ソフトウェアの概要(BOND コントローラ上)	70
3.1システムの構造	71
3.1.1シングルシート構成	71
3.1.2BOND-ADVANCE	72
3.2BOND ソフトウェアの起動 とシャットダウン	74
3.2.1BONDソフトウェアの起動	74
3.2.2BOND-PRIME 処理 モジュールの PIN の設定 または変更	75
3.2.3BONDソフトウェアのシャットダウン	77
3.3ユーザーの役割	77
3.4臨床 クライアントインターフェースの概要	78
3.4.1ファンクションバー	78
3.4.2処理 モデュールタブ	80
3.4.3表の並べ替え	80
3.4.4日付のフォーマット	80
3.5BOND-ADVANCEダッシュボード	81
3.5.1スライド染色 ユニットのステータス	82
3.6通知、警告、アラーム	83
3.7レポート	84
3.7.1レガシーレポート	85
3.8ヘルプ	85
3.9BOND について	86
3.10BOND データ定義	87
3.10.1データ定義の更新	87
3.11ソフトウェアの更新	87
4 クイックスタート	88
4.1BOND-III とBOND-MAX	88
4.1.1初期点検と起動	
4.1.2プロトコールと試薬の点検	89
4.1.3スライドの設 定	90

4.1.4試薬のロード	96
4.1.5プロトコールの実行	99
4.1.6終了	100
4.2BOND-PRIME	101
4.2.1初期点検 と起動	101
4.2.2プロトコールと試薬の点検	101
4.2.3スライドの設定	101
4.2.4BOND-PRIME 処理 モジュールで次の操作 を行います。	101
5 BOND-III および BOND-MAX のステータス画面 (BOND コントローラー上)	102
5.1システム状態画面	103
5.1.1処理 モデュールタブ	104
5.1.2ハードウェアステータス	105
5.1.3試薬のステータス	107
5.1.4スライド情報	115
5.1.5オンボードスライドの識別	119
5.1.6処理進行インジケーター	122
5.1.7処理の開始または中止	126
5.1.8遅延スタート	127
5.2プロトコールの状態画面	128
5.3メンテナンス画 面	129
5.3.1メンテナンスレポート	130
6 スライド設定(BOND コントローラー上)	132
6.1スライド設定画面	133
6.2コントロールの作業	134
6.2.1 コントロール組織	134
6.2.2コントロール試薬	134
6.3ケースの作業	135
6.3.1ケースコントロールおよび有効ケースの情報	135
6.3.2ケース識別子	136
6.3.3ケースの追加	137
6.3.4ケースの重複、復活、有効期限	138
6.3.5ケースの編集	139
6.3.6ケースのコピー	139

6.3.7デイリーケースオプション	140
6.3.8ケースレポート	140
6.4医師の管理	141
6.5スライドでの作業	141
6.5.1スライドフィールドとコントロールの説明	142
6.5.2スライドの作成	143
6.5.3スライドのコピー	146
6.5.4スライドの編集	146
6.5.5スライドの削除	146
6.5.6手動でスライドを識別する	147
6.5.7スライドのパネルの追加	148
6.5.8分注量 とスライド上の組織の位置	148
6.6スライドのラベル付け	150
6.6.1ラベルの印刷、およびスライドへの貼付	150
6.6.2スライドID とラベル ID	152
6.7スライド設定のサマリーレポート	153
6.8スライドとケースの臨時作成	154
6.8.1画像取得後の新しいケースおよび/またはスライドの作成	154
6.8.2オンボードスライドの識別 オプション	156
6.9スライドの互換性	157
6.9.1プロトコールの互換性	158
7プロトコール(BOND コントローラーで)	160
7.1プロトコールの種類	161
7.1.1染色モード	161
7.1.2プロトコールシーケンス	163
7.2プロトコール設定画面	165
7.2.1プロトコールの詳細	167
7.3新規プロトコールの作成	169
7.4ユーザープロトコールの編集	170
7.4.1プロトコールステップの編集	170
7.4.2プロトコールのステップの追加と削除	172
7.4.3プロトコールの規則	178
7.4.4複数の処理 モジュールタイプとプロトコールバージョン	182

7.4.5プロトコールの削除	185
7.5プロトコールレポート	186
7.6あらかじめ定義されたプロトコール	187
7.6.1染色プロトコール	187
7.6.2前処理プロトコール	189
8 試薬管理 (BOND コントローラー上)	190
8.1試薬管理の概要	191
8.1.1一般情報	192
8.2試薬の設定画面	195
8.2.1試薬の追加または編集	197
8.2.2試薬の削除	199
8.3試薬在庫画面	199
8.3.1試薬量の決定	201
8.3.2試薬または試薬システムの詳細	202
8.3.3試薬と試薬システムの登録	204
8.3.4在 庫 詳細 レポート	208
8.3.5試薬の使用レポート	209
8.4試薬パネル画面	210
8.4.1パネルの作成	210
8.4.2パネルの詳細の表示または編集	211
8.4.3パネルの削 除	211
9 スライド履歴(BOND コントローラー上)	212
9.1スライド履歴画面	213
9.2スライドの選択	214
9.3スライドのプロパティとスライドの再処理	215
9.3.1スライドの再処理	215
9.4処 理 イベントレポート	216
9.5処理詳細レポート	217
9.6ケースレポート	218
9.7プロトコールレポート	
9.8スライドサマリー	220
9.9データのエクスポート	221
9.10簡 単 なスライド履 歴	223

10 管理者 クライアン ト(BOND コントローラー上)	224
10.1ユーザー	225
10.2LIS	227
10.3ラベル	229
10.3.1ラベルのテンプレートの作成、編集、起動	233
10.3.2情報 タイプ	235
10.4BDD	237
10.4.1BDD更新	238
10.4.2変更追跡記録	239
10.5設定	239
10.5.1施設設定	240
10.5.2ケースとスライドの設定	241
10.5.3データベースバックアップ	242
10.6ハードウェア	244
10.6.1処理 モデュール	244
10.6.2ポッド	247
10.6.3スライドラベラー	249
11 LIS インテグレーションパッケージ(BOND コントローラー上)	264
11.1LISの用語	265
11.2ソフトウェアのその他の機能	265
11.2.1LIS ステータスアイコン	266
11.2.2LISケース	266
11.2.3LISスライド	267
11.2.4正式 マーカー名	267
11.2.5優 先 スライド	268
11.2.6LISスライドデータフィールド	268
11.3LISの接続 と初期化	269
11.4LIS通知	270
11.5ケースおよびスライドのデータ要件	271
11.5.1ケースデータ	271
11.5.2スライドデータ	272
11.6LISへのスライドデータの返信	273
11.7スライドラベル	273

11.8ワークフロー	274
12 クリーニングとメンテナンス(BOND-III およびBOND-MAX のみ)	275
12.1 クリーニングとメンテナンススケジュール	277
12.1.1 クリーニング とメンテナンスのチェックリスト	278
12.2バル <i>ク</i> 容器	280
12.2.1コンテナのレベルを確認	280
12.2.2バルク容器を充填する、または、空にする	281
12.2.3バルク容器のクリーニング	285
12.2.4外 部 廃 液 容 器 (BOND-MAXのみ)	286
12.3Covertile	288
12.3.1DABの汚 れを除 去 (オプション)	288
12.3.2標準 クリーニング (必須)	288
12.4スライド染色 ユニット	289
12.4.1スライド染色 ユニットを手動 でロック解除	292
12.5処理 モデュールの再起動	296
12.6吸 引 プローブ	297
12.6.1吸引プローブのクリーニング	297
12.6.2吸引プローブのクリーニングの実行	298
12.7洗 浄 ブロックとミキ シング ステーション	299
12.8カバー、ドアおよびフタ	300
12.9IDイメージャー	300
12.10 ドリップ・トレイ	301
12.10.1BOND-III バルク容器 のドリップトレイ	301
12.10.2BOND-III 処理 モジュールのドリップ トレイ	303
12.10.3BOND-MAX のバルク容器 ドリップトレイ	304
12.11スライドトレイ	304
12.12バルク溶液 ロボットプローブ(BOND-IIIのみ)	304
12.12.1バルク溶液 ロボットプローブのクリーニング	304
12.13シリンジ	305
12.13.1BOND-III シリンジの交換	
12.13.2BOND-MAX 9ポートシリンジの交換	307
12.14電源 ヒューズ	309

13 クリーニングとメンテナンス(その他)	311
13.1ハンディバーコードスキャナー	311
13.1.1Symbolバーコードスキャナー	311
13.1.2Honeywellバーコードスキャナー	313
13.1.3Zebra DS2208 バーコードスキャナー	316
13.2スライドラベラー	319
14 BOND 試薬の使用	320
14.1手順の原理	320
14.1.1BOND 検 出 システム	321
14.2標本調製	324
14.2.1必要な材料	324
14.2.2組織調製	326
14.2.3脱 パラフィンとベーキング	326
14.2.4抗原賦活化	327
14.3品 質管理	327
14.3.1アッセイ検証	328
14.3.2組織 コントロール	328
14.3.3IHCの陰性試薬 コントロール	329
14.3.4ISH用の試薬 コントロール	330
14.3.5品質管理の恩恵	330
14.4染色の解釈	331
14.4.1陽性組織 コントロール	331
14.4.2陰性組織 コントロール	332
14.4.3患者組織	332
14.5一般的な制限事項	332
14.6参考文献	334
15 システム管理(BOND コントローラー上)	335
15.1BOND システムマネージャー	335
15.1.1概要	335
15.1.2BOND システムマネージャーのウィンドウ	336
15.1.3サービスの停止	337
15.1.4サービスの開始	337
15.2ハードディスクの冗長性	339

16 BOND-ADVANCE の操作方法	340
16.1BOND-ADVANCE システムの再起動	340
16.2第二 コントローラーへの切 り替 え	341
17 スライドラベルプリンターの交換	346
17.1シングルシートシステムで Cognitive Cxi プリンターを交換 する	346
17.2BOND-ADVANCE システムでCognitive Cxiプリンターを交換 する	347
17.3シングルシートシステムでZebra PrinterをCognitive Cxi プリンターに交換 する	351
18 仕様	352
18.1システムの仕様	352
18.2物理仕様	353
18.3電力 とUPSの要件	353
18.4環境仕様	353
18.5動作仕様	354
18.6顕微鏡 スライド	355
18.7輸送 および保存	356
索引	357

はじめに

1.1 システムの概要

Leicaは、IHCおよびISHのBOND完全自動染色システムです.Leicaは施設に必要な、染色のクオリティー、処理能力、使い勝手の良さをお約束いたします.BONDシステムの対象ユーザーは適切なトレーニングを受けた施設の担当者です。

BONDシステムには、BONDコントローラーで制御した、複数の処理モデュールが含まれます。

処理 モジュール(PM) には3つの種類があります。

- BOND-III とBOND-MAX は、それぞれ最大 30 枚のスライドを一度に処理できます。必要に応じて異なるプロトコールを使って、同時に、最大10枚のスライドを3処理で処理することができ、連続的に処理できるように、各処理を別々に開始することができます。1つ以上の処理を二重染色に設定し、他をDAB または Red シングル染色を処理するように設定することもできます。
- BOND-PRIMEは、24個の個別の染色プロトコールで最大72枚のスライドを一度に連続的に処理できます。

BONDソフトウェアによって、設定やスライドの染色が簡単に行えます。システムには精密にテストされたプロトコールが提供されていますが、自分でプロトコールを作成することもできます。BOND希釈済抗体、その他の抗体やプローブ等と組み合わせて、高品質のBOND検出システムを使用できます。ソフトウェアで仮想スライドを作成するか、施設情報システム(LIS)からインポートした後、ラベルを作成し(またはLISで作成して)、スライドに貼付し、処理モデュールにロードします。後はBONDが全て実行し、質の高い染色を行います。

Leica Biosystems が供給 するプロトコールと試薬製品は、Leica Microsystems 提供のソフトウェアに表示されます。

BONDシステムの機能は、以下のとおりです。

- ハイスルーインプット
- 柔軟性
- 安全性
- 自動免疫染色および対比染色
- 自動ISH染色および対比染色
- 自動ベーキング、脱パラフィン、賦活化
- 自動化された多重染色

BONDシステムは、検査室手技に高い付加価値を確実にもたらします。

以下の各項目を参照:

- 1.2 ヘルプについて
- 1.3 第一ステップ
- 1.4 プロトコールの実行 ワークフロー

1.2 ヘルプについて

BOND ユーザーマニュアル (本書)は、全てのコントローラー(シングルシート)とターミナル(BOND-ADVANCE)に、PDF フォーマットでインストールされます。また、付属のUSBにも収録されています。

両方のBOND ソフトウェアクライアント内にあるファンクションバー上のヘルプアイコンスクトップアイコンから開くと、このユーザーマニュアルが表示されます。

をクリックするか、デ

BONDシステムに関して問題が発生した場合には、最寄りのLeica Biosystemsの担当者までご連絡いただくか、www.leicabiosystems.comをご覧ください。

1.3 第一ステップ

この章では、BONDシステムを新規にインストールしたユーザーが、本製品の正常な操作に関する知識を身につけるために、このユーザーマニュアルで情報を検索する方法について説明します。

手順	内容	マニュアルのセクション
1	インストールと試運転 ハードウェアを設定し、ソフトウェアをインストールして、システムを点検します。 これは Leica Biosystems の担当者または指定販売店が行います。	
2	安全性に関するセクションをお読みください。 BONDシステムの安全要求事項について習熟 してください。	一般警告事項と一般的注意
3	ハードウェアに関する理解 BONDハードウェアの部品の名前や使用方法を ご確認ください。	2 ハードウェア
4	ソフトウェアに関する理解 ソフトウェアとその使用方法に関する一般的な知識ご確認ください。	3 ソフトウェアの概要 (BOND コントローラ上)
5	プロトコールと試薬の確認 試薬とプロトコールは、インストール中に設定されている場合があります。	7プロトコール(BOND コントローラーで) 8試薬管理 (BOND コントローラー上)
	• 所望のプロトコールが設定されているか を確認してください。	
	現場で必要な試薬が設定されているかどうかを確認してください。	
6	プロトコールの実行 簡単な概要を見るには 詳しい概要を見るには	1.4 プロトコールの実行 - ワークフロー 4 クイックスタート
7	詳細 必要に応じて、ソフトウェアに関する理解を一 層深めてください。	5 BOND-III および BOND-MAX のステータス画 面 (BOND コントローラー上) ~ 9 スライド履歴 (BOND コントローラー上)
8	LISの併用 オプションパッケージを使用すると、施設情報システムに接続できます。	11 LIS インテグレーションパッケージ(BOND コントローラー上)
9	BONDシステムのメンテナンス	12 クリーニングとメンテナンス(BOND-III およびBOND-MAX のみ)

1.4 プロトコールの実行 - ワークフロー

1.4.1 BOND-III &BOND-MAX

警告:試薬とスライドの汚染を防くために、処理モジュールはできるだけ埃や微粒子のない清潔な環境で操作してください。

スライドトレイ染色のための標準手順の概要は、以下のとおりです。オプション設定が異なるときは、別のワークフローが使用可能です。

1.4.1.1 最初の点検と起動

- 1 処理 モデュールが清浄で、全てのメンテナンスが実行され装置が最新の状態になっていることを確認します(12.1 クリーニングとメンテナンススケジュール).毎日処理前のタスクは次のとおり:
 - a バルク廃液コンテナ内の廃液が半分以下かを確認。
 - b バルク試薬コンテナの充填を確認。必要な場合は再充填してください。
- 2 洗浄ブロックとミキシングステーションの確認 必要に応じてクリーニングまたは交換します。
- 3 スライドラベラーにラベルと印刷リボンがあり、オンになっているかを確認
- 4 処理 モデュールとコントローラー(および BOND-ADVANCE のターミナル)をオンにし、BOND クライアントを開きます。

1.4.1.2 試薬の設定

- 1 必要に応じて、システムで試薬を作成します(8.2.1 試薬の追加または編集)。
- 2 試薬 コンテナの登録(8.3.3 試薬 と試薬 システムの登録)。

1.4.1.3 プロトコールの設定

1 必要に応じて、新しいプロトコールを作成します(7.3新規プロトコールの作成)。

1.4.1.4 スライドの設定

- 1 ソフトウェアでケースを作成します(6.3.3 ケースの追加)。
- 2 ソフトウェアでスライドを作成します(6.5.2 スライドの作成)。
- 3 スライドラベルを印刷して、スライドに貼付します(6.6.1 ラベルの印刷、およびスライドへの貼付)。
- 4 スライドトレイにスライドとCovertileを配置します(4.1.3 スライドの設定)。

1.4.1.5 処理モデュールをロードし、処理を開始します。

- 1 処理モジュールにスライドトレイを挿入します(4.1.3.5 スライドのロード)。
- 2 処理モジュール(4.1.4 試薬のロード)に検出システムと試薬トレイをロードします。
- 3 処理モデュールのロード/アンロードボタンを押し、スライドトレイをロックします。
- 4 システムステータス画面で、スライドが全て識別されていることを確認します。 自動で識別されない スライドは手動で識別してください(5.1.5.2 オンボードスライドの手動識別)。
- 5 システムステータス画面の警告表示を見て修正します。
- 6 ボタンをクリックすると処理が開始されます。

1.4.1.6 処理のモニター

1 システム状態画面(5.1 システム状態画面)、または BOND ダッシュボード(3.5 BOND-ADVANCEダッシュボード)上で、処理の進行状況をモニターします。通知を見て修正します。

1.4.1.7 スライドと試薬のアンロード

1 処理が終了しましたら、検出システムと試薬トレイを取り外し、試薬を保管します(4.1.6終了)。

処理 モデュールを使用していないときは、ER1 とER2 のバルク容器を取り外し、2~8°C で保存します。2.2.7 バルク容器 キャビティも参照してください。

- 2 処理 モデュールのロード/アンロードボタンを押して、スライドトレイのロックを解除し、トレイを取り外します。
- 3 Covertile を取り外してクリーニングします(12.3 Covertile)。

Covertile のクリーニング中は、トレイにスライドを装着したままにしないでください。

- 4 スライドを取り外します。
- 5 スライド染色 ユニット(12.4 スライド染色 ユニット)、処理 モジュールの他の部品、スライド、試薬 トレイの こぼれ や汚れ を清掃します。

1.4.1.8 BOND-MAXおよびBOND-IIIシステムでの保湿

染色プロセスが完了すると、スライドは取り外されるまで保湿されます。BOND-MAXおよびBOND-IIIでは、スライドトレイ内のスライドは、スライドトレイが上がるまで、指定された保湿溶液で定期的に保湿されます。スライドトレイを上げた後は、処理モジュールからトレイをすぐに取り外してください。

1.4.2 BOND-PRIME

詳細については、別書のBOND-PRIME ユーザーマニュアルを参照してください。

1.4.2.1 最初の点検と起動

- 1 コントローラー(およびBOND-ADVANCEのターミナル)をオンにし、BOND臨床クライアントを開きます。
- 2 スライドラベラーにラベルと印刷リボンがあり、オンになっているかを確認
- 3 BOND-PRIME 処理 モジュールを初期化してログインします。
- 4 アクションが「まもなく」または「今すぐ」必要であることを示すアクションキューのタスクを完了します。

1.4.2.2 試薬の設定

- 1 必要に応じて、システムで試薬を作成します(8.2.1 試薬の追加または編集)。
- 2 試薬 コンテナの登録(8.3.3 試薬 と試薬 システムの登録)。

1.4.2.3 プロトコールの設定

1 必要に応じて、新しいプロトコールを作成します(7.3新規プロトコールの作成)。

1.4.2.4 スライドの設定

- 1 ソフトウェアでケースを作成します(6.3.3 ケースの追加)。
- 2 ソフトウェアでスライドを作成します(6.5.2 スライドの作成)。
- 3 スライドラベルを印刷して、スライドに貼付します(6.6.1 ラベルの印刷、およびスライドへの貼付)。

1.4.2.5 BOND-PRIME 処理 モジュールで次の操作を行います。

- 1 試薬トレイと検出システムトレイをロードします。
- 2 スライドをプリロードドロワーにロードします。
- 3 スライドがスキャンされ、ドロワーから移され、自動的に処理されます。

1.4.2.6 BOND-PRIMEシステムでの保湿

染色プロセスが完了すると、スライドは取り外されるまで保湿されます。BOND-PRIMEでは、スライドはアンロードドロワーに移され、取り外されるまで脱イオン水によってドロワーで保湿されます。

7 ハードウェア

BOND-PRIME 処理 モジュールのハードウェア情報 については、別書の BOND-PRIME ユーザーマニュアルを参照してください。

本セクションの内容。

- BOND システムの部品の名前
- 各部の機能と、全体的なシステムとの関連性
- 詳細情報の入手方法(例:装置に関する操作手順およびメンテナンス手順)

システムは各施設の用途に合わせて設定および試験されるため、部品の設定方法や接続方法の詳細は、ハードウェアの説明に含まれていません。部品の交換や再接続が必要な時は、12 クリーニングとメンテナンス (BOND-III および BOND-MAX のみ)を参照してください。

場合によっては、BOND-III および BOND-MAX 処理 モジュールに関する情報をすぐに見つけられるように、これらの情報が別々のセクションに分けられていることがあります。

以下の各項目を参照:

- 2.1 BOND システム
- 2.2 BOND-IIIおよびBOND-MAX処理モデュール
- 2.3 BOND コントローラーとターミナル
- 2.4 ハンディバーコードスキャナー
- 2.5 スライドラベラー
- 2.6 付属備品
- 2.7 処理 モジュールの移動
- 2.8装置の停止と廃棄

2.1 BOND システム

BOND システムの主な部品を以下に示します。

- 1台またそれ以上の処理モジュール (2.2 BOND-IIIおよびBOND-MAX処理モデュールを参照)
 BOND-PRIME 処理モジュールについては、別書のBOND-PRIME ユーザーマニュアルを参照してください。
- BOND コントローラーまたは BOND-ADVANCE コントローラー(2.3 BOND コントローラーとターミナルを参照) BOND-ADVANCE インストールには、ターミナルだけでなく、コントローラーとしての機能があり、また、第二 (バックアップ) コントローラーを設置 することもできます。
- 1台 またそれ以上のハンディバーコードスキャナー(2.4 ハンディバーコードスキャナーを参照)
- 1台 またそれ以上のスライドラベルプリンター(2.5 スライドラベラーを参照)

新しい BOND-III または BOND-MAX 処理 モジュールには、次の部品が付属しています。

- スライドトレイ4個(2.6.2.1 スライドトレイを参照)
- 試薬トレイ4個(2.6.2.2 試薬トレイを参照)
- ミキシングステーション1個 (2.2.9 洗浄ブロックとミキシングステーションを参照)
- シリンジポンプ交換用の六角レンチ1本
- イーサネットケーブル 1本

また、BOND-III または BOND-MAX 処理 モジュールには、次の部品 が必要です。

- Covertile(2.6.2 BOND Universal Covertiles を参照)。
- BOND 検出システム、とBOND 希釈済抗体 または濃縮抗体、あるいはオープン試薬 コンテナ(2.6.3 試薬システムと容器 を参照)

BOND-PRIME 処理 モジュールの付属品 については、別書の BOND-PRIME ユーザーマニュアルを参照してください。

消耗品や予備部品の最新リストについては、www.leicabiosystems.comを参照してください。

3.1 システムの構造も参照のこと。

2.1.1 BOND 付属品

BOND アクセサリー製品は、BOND システム専用に設計されており、最適な染色結果が得られるよう設計されています。また、BOND アクセサリー製品を用いることにより、処理モジュールを良好な状態に保ち損傷を防止することができます。

以下の製品は必ずBONDシステムと併用してください。他製品を代用することはできません。

アクセサリー試薬

- BOND 洗浄液 または BOND-PRIME Wash Solution Concentrate
- BOND または BOND-PRIME Epitope Retrieval Solution(1&2)
- BOND または BOND-PRIME Dewax Solution

BOND-III または BOND-MAX の消耗品

- BOND Plus スライドおよび Apex BOND スライド(2.6.1 スライドに表示 される仕様に準拠したガラススライド)
- BOND Universal Covertiles
- BOND Open Containers (7 mL および 30 mL)
- BOND Titration Containers and Inserts (6 mL)
- BOND Mixing Vial
- BOND Slide Label and Print Ribbon Kit

BOND-PRIME の消耗品

- BOND Plus スライドおよび Apex BOND スライド(2.6.1 スライドに表示 される仕様に準拠したガラススライド)
- BOND Open Containers (7 mL および 30 mL)
- BOND Titration Containers and Inserts (6 mL)
- BOND-PRIME Suction Cups (BOND-PRIME 吸着カップ)
- BOND Slide Label and Print Ribbon Kit
- BOND-PRIME ARC Refresh Kit (BOND-PRIME ARC リフレッシュキット)(ARC Covertile および Mixing Well Plate (ミキシングウェルプレート)を含む)

2.2 BOND-IIIおよびBOND-MAX処理モデュール

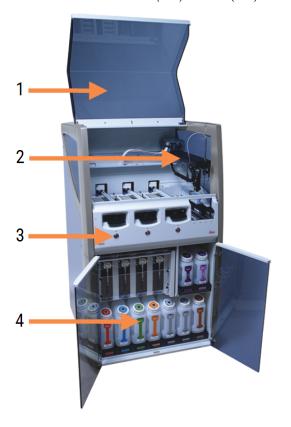
処理 モデュール (PM) は BOND システムの染色プラットフォームです。処理 モジュールのタイプを組み合わせて、シングルシート BOND システムには処理 モジュールを 5 台まで、BOND-ADVANCE システムには 30 台まで装着することができます。

警告:処理モジュールは接地端子付きの電源コンセントに接続し、また操作者が処理モジュールを動かすことなく直ちに電源ケーブルを抜くことができる場所に配置します。

- 2.2.1 メインコンポーネント
- 2.2.2 処理 モデュールの初期化
- 2.2.3 フタ
- 2.2.4 ロボットアーム とIDイメージャー
- 2.2.5 スライド染色 ユニット
- 2.2.6 前面パネル
- 2.2.7 バルク容器 キャビティ
- 2.2.8 吸引プローブ
- 2.2.9 洗浄ブロックとミキシングステーション
- 2.2.10 バルク溶液ロボット(BOND-IIIのみ)
- 2.2.11 シリンジ
- 2.2.12 電源 スイッチ
- 2.2.13後部カバー

2.2.1 メインコンポーネント

BOND-III および BOND-MAX のメインコンポーネントを参照します。


- 2.2.1.1 BOND-III
- 2.2.1.2 BOND-MAX

2.2.1.1 BOND-III

以下の写真は、BOND-IIIの処理モデュールの主な部品を示しています。現在のモデルが表示されます-旧モデルは外観が異なりますが、主なコンポーネントは同じです。

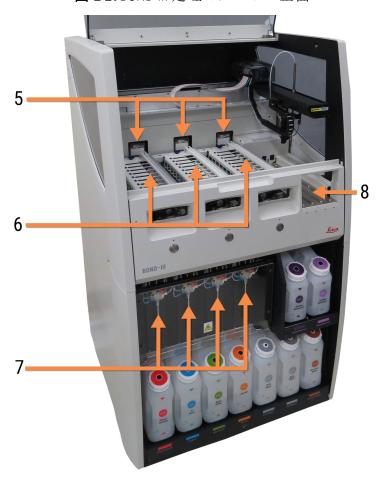

後部カバーの説明は、2.2.13後部カバーを参照してください。

図 2-1: 旧式(左) と現行(右)のBOND-III 処理モジュールの正面図

- 1 **フタ** 2.2.3 フタ
- 2 メインロボットアーム 2.2.4 ロボットアーム とIDイメージャー
- 3 **前面パネル** 2.2.6 前面パネル
- 4 バルク容器 キャビティ 2.2.7 バルク容器 キャビティ

図 2-2:BOND-III 処理 モジュールの正面

- 5 バルク溶液 ロボット2.2.10 バルク溶液 ロボット(BOND-IIIのみ)
- 6 **スライド染色ユニット** 2.2.5 スライド染色ユニット

- 7 シリンジ 2.2.11 シリンジ
- 8 試薬プラットフォーム 2.2.6.5 試薬プラットフォーム

2.2.1.2 BOND-MAX

以下の写真は、BOND-MAX 処理モジュールの主な部品を示しています。現在のモデルが表示されます-旧モデルは外観が異なりますが、主なコンポーネントは同じです。

図 2-3:BOND-MAX 処理 モジュールの正面図

- 1 **フタ** 2.2.3 フタ
- 2 ロボットアーム 2.2.4 ロボットアーム とIDイメージャー
- 3 **スライド染色 ユニット** 2.2.5 スライド染色 ユニット

- **4 前面パネル** 2.2.6 前面パネル
- 5 バルク容器 キャビティ2.2.7 バルク容器 キャビティ

図 2-4:BOND-MAX 処理 モジュールの右側面図

凡例

- 6 **電源 スイッチ** 2.2.12 電源 スイッチ
- 7 **吸引プローブ** 2.2.8 吸引プローブ
- 8 洗浄ブロックとミキシングステーション 2.2.9 洗浄ブロックとミキシングステーション
- 9 試薬プラットフォーム2.2.6.5 試薬プラットフォーム
- 10 シリンジ(下の写真参照) 2.2.11 シリンジ

後部カバーの説明は、2.2.13後部カバーを参照してください。

図 2-5: 開き戸の後 ろのシリンジ

2.2.2 処理モデュールの初期化

処理モデュールをオンにすると、BONDシステムは内部チェックを行い、流体系システムの用意を行ってロボットを定位置に動かします。メインロボットは処理モジュールの後方左側の角に移動し、3台のバルク溶液ロボット(BOND-III のみ)は処理モジュールの後方に移動します。

スライド染色 ユニットが初期化され、ロック解除位置に戻ります。初期化処理は、障害が見つかった場合やモジュールが処理に適していない状態になっている場合には停止します。

処理モジュールの初期化を行う前に、以下の項目について確認します。

- フタが閉じていること
- 前部ドアが閉じています(BOND-MAXのみ)
- バルク廃液 コンテナ中の廃液が半分以下であること
- バルク試薬コンテナには適切な量の試薬があります
- ミキシングステーションが定位置にあること
- ミキシングステーションのバイアルが空であり、汚染がないこと
- スライド染色ユニット(SSA)の上部のプレートが閉鎖位置になっていること

処理モデュールの前面にある電源LEDが緑色に点灯し、BONDソフトウェアにモジュールが接続されたことが示されます。初期化が完了すると処理モデュールタブに3つのスライドトレイのアイコンが表示されます(5.1.1 処理モデュールタブを参照)。初期化が完了するまで処理モデュールを使用しないでください。

2.2.3 フタ

操作中はフタが閉まり、インターロックで保護されます。

警告:処理モジュールのフタを閉めるときは、手を挟んで怪我をしないよう注意してください。

警告:メインロボットの操作中、吸引プローブおよびバルク液ロボット(BOND-III)は突然高速で動く場合があり、ケガの原因となる可能性があります。

処理中は処理モジュールのフタを開けようとしないでください。

フタが開いたときに処理モジュールの動作を停止するインターロックを解除しないでください。

警告:処理モジュールのフタが開いてから、約5秒以上メインロボットやバルク溶液ロボットが動作し続ける場合には、直ちにカスタマーサービスにご連絡ください。

2.2.4 ロボットアームとIDイメージャー

メインロボットによって、吸引プローブが試薬を吸引し分注できる位置に配置されます。またロボットアームでIDイメージャー(処理モデュールにロードされているスライドと試薬を識別するために使用される)が保持されます。

図 2-6: メインロボットとIDイメージャーの写真(矢印で示す)

警告:処理モデュールがオンになっているときはメインロボットアームは取り外さないでください. ロボットの配置が狂って染色の効果が低下する恐れがあります。

ロボットが動いた場合には、処理モジュールの電源をオフにして、30秒待ってから再度初期化します。

スライドに関して、BOND システムは、識別目的で各スライドのラベルをスキャンします。(5.1.5.1 スライドの自動 識別を参照)。

- IDイメージャーのウィンドウは、定期的にクリーニングしてください。クリーニング方法については、12.9 IDイメージャーを参照してください。
- 吸引プローブが折れたり曲がっている場合は、カスタマーサポートにご連絡ください。

2.2.5 スライド染色 ユニット

警告:スライド染色部品とその周辺装置に触らないでください.非常に高温になることがあり、ひどい火傷を負うおそれがあります。動作停止後20分間放置して、スライド染色ユニットとその周辺装置の温度が下がるまでお待ちください。

警告:危険性のある試薬がスライド染色ユニットの周囲に蓄積されてスライドトレイを汚染することがあります。スライドトレイを扱うときには、必ず適切な保護服と手袋を着用します。

スライドは、スライド染色 ユニットで処理 されます。各処理 モデュールは、3 台のスライド染色 ユニットから構成されています。

操作を開始するには、スライドトレイを前部カバー(2.2.6 前面パネルを参照)から挿入して、ロードボタンを押します。BONDシステムにスライド画像が取り込まれます。スライドに互換性があり(6.9 スライドの互換性を参照)、全ての試薬が存在すれば、プロトコールを開始可能です。スライドの挿入やロードの詳細については、6スライド設定(BONDコントローラー上)を参照してください。

処理が開始する前に、BOND システムはスライドをスライド染色 ユニットにロックします。BOND システムがスライドを処理している間にスライドトレイを取り外す必要がある場合は、まず、処理を中止する必要があります。 システムステータス画面(5.1.7 処理の開始または中止を参照)のトレイの下の をクリックしてから、スライド染色 ユニットのロックを解除します。

スライド染色 ユニットのクリーニングと定期 メンテナンスについては12.4 スライド染色 ユニットを参照してください。

スライド染色 ユニットヒーター

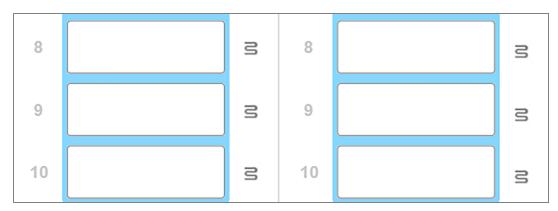
警告:処理モジュールのヒーターや加熱面が着火する危険があります:

- ヒーターの上やその付近に可燃物を置かないでください。
- 処理モジュールの加熱面の上に可燃物を置かないでください。
- バルク容器を再充填または空にした後はキャップがきちんと閉まっていることを確認してください。

警告: BOND-IIIおよびBOND-MAX処理モデュールで使用される試薬の中には、発火性のものがあります。

- 処理モジュールの近くに炎や発火源を置かないでください。
- バルク容器を再充填または空にした後はキャップがきちんと閉まっていることを確認してください。

BOND-III および BOND-MAX 処理 モジュールのそれぞれのスライド位置には加熱 エレメントがあります。各 エレメントが個々にモニタリングされ、温度 エラーが生じた時はエラーが通知されます(図 2-7 を参照)。ヒーターがエラーを表示した場合は、サービス担当部門へ連絡してください。


図 2-7:個別のヒーターのエラー

エラー表示された位置で、加熱を必要とするスライド処理を実行しないでください。実行中にヒーターが誤動作した場合、その位置のスライドは正しく処理されない可能性があります。

ヒーターの誤作動が安全性にリスクを及ぼす可能性がある場合は、処理モジュールにより、全てのスライドのヒーターが切断されます(温度管理されている、現在処理中のスライドを含む)。

図 2-8: ヒーターの動作が停止すると、各位置のヒーターのシンボルが灰色になります。

スライドヒーターが切断されたら、処理モデュールをオフにしてから再起動し、ヒーターのロックを解除してください。ただし異常のあるヒーター位置は、引き続き加熱を必要としないスライド処理に使用可能です。

2.2.6 前面パネル

下の図は、BOND-III およびBOND-MAX の前部 カバーです。

1 4 5 6 BOND-III Seica

図 2-9:BOND-III 前 部 カバー

- 1 前面パネル 2.2.6.1 電源 LED
- 2 **スライドトレイベイ** 2.2.6.2 スライドトレイベイ
- 3 **スライドトレイLED** 2.2.6.3 スライドトレイLED

- 4 試薬プラットフォーム
 - 2.2.6.5 試薬プラットフォーム
- 5 試薬トレイLED 試薬トレイLED
- 6 ロード/アンロードボタン 2.2.6.4 ロード/アンロードボタン

図 2-10: BOND-MAX 前部 カバー

凡例

- 1 前面パネル 2.2.6.1 電源 LED
- 2 **スライドトレイベイ** 2.2.6.2 スライドトレイベイ
- 3 **スライドトレイLED** 2.2.6.3 スライドトレイLED

- 4 試薬プラットフォーム2.2.6.5 試薬プラットフォーム
- 5 試薬 トレイLED 試薬 トレイLED
- 6 ロード/アンロードボタン 2.2.6.4 ロード/アンロードボタン

2.2.6.1 電源LED

以下のように動作します。

- **オフ** 電源オフ。
- 青 (現行 モデル) またはオレンジ(旧 モデル)- 電源オン、ただし処理モデュールのソフトウェアはまだ起動していません。
- 緑 電源オン。システムが作動しています。

図 2-11:BOND-MAX 処理 モジュール上の電源 LED の色(青、緑)

2.2.6.2 スライドトレイベイ

スライドトレイを挿入するベイが3個(各スライド染色ユニット用に1個ずつ)あります。スライドトレイを挿入する場合は、ロード/アンロードボタンを押してスライド染色ユニットにロックします。トレイがロックされると、ロボットアームによってIDイメージャーがトレイ内のスライド上に移動して、自動的にスライドが識別されます。

2.2.6.3 スライドトレイLED

各 スライド染色 ユニットの下の前部 カバーにある多色 LED は、スライドトレイの状態を表示します。BOND-MAX 処理 モジュールのロード/アンロードボタンには、スライドトレイの LED が組 み込 まれています。このボタンを押すと、LED が数 秒 間 青 に変わります。

スライド染色ユニットのLEDの色表示は次のとおりです:

- オフ-スライドトレイがない、あるいはスライドトレイのロックが解除されている。
- オレンジ色(常時点灯) トレイがロードされロックされていますが、処理は開始されていません。ロード/アンロードボタンを用いて安全にトレイのロックを解除して取り外すことができます。
- 赤色(常時点灯) トレイのスライドを処理中です。
 トレイがロックされ、ロード/アンロードボタンでは解除できません。ロックを解除するには、まずソフトウェアで処理を中止します。
- 緑色の点滅 通知なしで処理を終了。ロード/アンロードボタンでロックを解除します。
- 赤色の点滅 処理が拒否されたか、あるいは通知付きで処理を完了。ロード/アンロードボタンでロックを解除します。

図 2-12: BOND-MAX 処理 モジュール上 のスライドトレイの LED の色(オレンジ、赤、緑)

2.2.6.4 ロード/アンロードボタン

ロード/アンロードボタンを押すと、以下の操作が行われます。

- トレイがロードされていない時は何も起こりません。
- トレイがロードされてもロックされていない時は、BOND-III または BOND-MAX がトレイをロックします。ロボットアームが使用可能となると、IDイメージャーがスライドDを識別します。
- トレイがロックされても処理が開始されていない場合は、BOND-III または BOND-MAX がトレイのロックを解除します。
- トレイがロックされても処理が開始されていない場合は、BOND-III または BOND-MAX がトレイのロックを解除します。
- トレイがロックされて操作が進行中であれば、ロード/アンロードボタンを押しても反応しません。つまりトレイを用いた操作が終了または棄却されるまで、トレイのロック解除はできません。

スライド染色 ユニットが高温 になっている場合 は、トレイをロックまたはロック解除 することはできません。ユニットが冷 却 されるまでお待 ちください。

2.2.6.5 試薬プラットフォーム

これは、試薬トレイが配置される場所であり、検出システム、7 mL および30 mL の試薬コンテナ、または6 mL のタイトレーションコンテナが含まれています。各トレイは、9 種類までの試薬を、また試薬プラットフォームは、4 個の試薬トレイを保持することができます。

試薬トレイをロードするには、トレイをプラットフォーム上へスライドさせ、ロック機能をかけます(4.1.4 試薬のロードを参照)。ロボットアームが使用可能になると、BONDシステムは各試薬の位置の試薬を識別します。

試薬トレイLED

各トレイ位置の下に、2色のLEDがあります。その機能を以下に示します。

- オフ・トレイが検出されませんでした。
 トレイを挿入したにもかかわらずLEDがオフの時は、トレイが正し、挿入されていることを確認してください。
- 赤色(常時点灯) トレイの試薬は2分以内に必要となります。 トレイはロックされ、取り外しできません。
- 緑色(常時点灯) このトレイの試薬が2分以内に使用されることはありません。 トレイのロックが解除されていますので、一時的に取り外すことができます。

図 2-13: BOND-MAX 処理 モジュール上の試薬 トレイの LED の色(赤、緑)

2.2.7 バルク容器 キャビティ

バルク試薬 コンテナと廃液容器は、BOND-III とBOND-MAX の前部 カバーの下にあります。BOND-MAX には、標準廃液用外部 コンテナもあります。

バルク容器の充填、内容物の廃棄、およびメンテナンスについては、12.2 バルク容器を参照してください。

警告:処理モジュールを確実に正しく操作するために、色分けされた名前のラベルに従い、 キャビティ内の正しいステーションに各バルク試薬コンテナを配置します。

BOND-III については、図 2-14を参照してください。BOND-MAXについては、図 2-16を参照してください。

これを怠ると、染色に支障を来すことがあります。

警告:BOND-III および BOND-MAX 処理 モジュールで使用 される試薬の中には、発火性のものがあります。

- 処理 モジュールの近くに炎や発火源を置かないでください。
- バルク容器を再充填または空にした後はキャップがきちんと閉まっていることを確認してください。
- 2.2.7.1 BOND-III
- 2.2.7.2 BOND-MAX

2.2.7.1 BOND-III

旧式の BOND-III には、バルク容器に簡単にアクセスできるように、2個の透明キャビネットドアがあります。各ドアの上の取手をつかんで、ドアを開いてください。

スライド染色ユニットの廃液は、全て、ハザード廃液容器に送られます。洗浄ブロックの廃液は、廃液中の試薬の状態に応じて、標準廃液容器またはハザード廃液容器に送られます(試薬は、適切にハザードとして区分する必要があります。8.2.1 試薬の追加または編集を参照)。

各バルク試薬容器および廃液容器の重量センサーは、試薬レベルが低くなったか廃棄物レベルが高くなりすぎたときにユーザーに警告します。各バルク容器の状態はバルク容器照明システム(Mルク容器照明システム(BOND-III)(51ページのセクション))で視覚的に表示されます。このシステムは以前のBOND-IIIには取り付けられていません。代わりに画面上のアイコンを使用できます(5.1.3.6 バルク容器のステータスを参照)。

BOND-III には、以下に示す容器のためのスペースが図 2-14 に示す棚に(左から右に)あります。

ステーション	容器	位置	サイズ (L)	色	試薬
8	ER1	上の棚	2	紫色	BOND Epitope Retrieval Solution 1*
9	ER2		2	薄紫色	BOND Epitope Retrieval Solution 2*
1	Dewax Solution	下の棚	5	赤色	BOND Dewax Solution*
2	脱イオン水		5	青色	脱イオン水
3	洗浄緩衝液		5	緑色	BOND Wash Solution*
4	アルコール		5	オレンジ色	アルコール
5	バルク廃液		5	灰色	標準廃液
6	バルク廃液		5	灰色	標準廃液
7	ハザード廃液		5	茶色	ハザード廃液

^{*}BOND専用試薬のみを使用し、他製品で代用しないでください。

施設でER1またはER2、あるいは脱パラフィン液のコンテナを使用しない場合、管理者で無効にできます-10.6.1.1 バルク試薬容器の無効化を参照。

図 2-14: BOND-III のバルク試薬 コンテナの所定の位置

各バルク容器のラベルと蓋の色および印刷した説明が、容器の真下にある装置キャビティのラベルと一致していることを確認してください。

バルク容器 照明 システム(BOND-III)

BOND-III 処理 モジュールにはバルク容器 照明 システムが取り付けられています(下の図 2-15を参照)。

図 2-15: バルク容器照明システム

バルク容器照明システムにより、各容器の液面の高さを確認しやすくなり、通常動作中、この照明は白色で点灯します。

この照明はまた、各バルク容器の現在の状態を示します。

- バルクサプライ容器がほとんど空になると、あるいは、廃液容器がほとんど満杯になると、この照明は 白色で点滅します。
- バルクサプライ容器が空になると、あるいは、廃液容器が満杯になると、現行の処理に影響を与える ため、この照明は赤色で点滅します。
- バルク容器を取り外すと、バックライトがオフに切り替わり、処理モジュールキャビティ上にあるラベル照明が白色で点滅します。

バルク容器照明システムは、BOND 6.0以降のソフトウェアでのみ動作します。

バルク容器のシステムステータス画面での詳細な表示内容について、5.1.3.6 バルク容器のステータスも参照してください。

2.2.7.2 BOND-MAX

BOND-MAX には、バルク容器にアクセスするために下向きに開くドアが1 つあります。バルク容器(コンテナも透明)の試薬レベルが見えるように、ドアには透明パネルがあります。

ドアの両側は、マグネットラッチで保持されています.旧式の処理モジュールのドア(ハンドルなし)を開くには、ドアの両側の上部を引っ張ります。

バルク容器 キャビティのドアは、必ず染色処理中は閉めておいてください。ドアが開いていると、システムステータス画面に警告表示が表示され(5.1.2 ハードウェアステータス参照)、現在行われている処理全てが直ちに一時停止します。

処理モジュールの廃液は、廃液中の試薬の状態に応じて、標準廃液容器またはハザード廃液容器に送られます(試薬は、適宜ハザードとして区分する必要があります。8.2.1 試薬の追加または編集を参照)。

BOND-MAX では、バルク試薬 コンテナの試薬 レベルが低いと、液体レベルセンサーが警告を発するようになっています。また、廃液容器も廃液のレベルが高すぎると、液体レベルセンサーが警告を発します。補充と廃棄については、12.2 バルク容器を参照してください。

BOND-MAX には以下のコンテナを配置するために、左から右への順番でスペースがあります。

ステーション	容器	サイズ (L)	色	試薬
1	ハザード廃液	2	茶色	ハザード廃液
2	ER1	1	紫色	Bond Epitope Retrieval Solution 1*
3	ER2	1	薄紫色	Bond Epitope Retrieval Solution 2*
4	Dewax Solution	2	赤色	BOND Dewax Solution*
5	脱イオン水	2	青色	脱イオン水
6	洗浄緩衝液	2	緑色	BOND Wash Solution*
7	アルコール	2	オレンジ色	アルコール

*BOND専用試薬のみを使用し、他製品で代用しないでください。

ER1 または ER2 や脱 パラフィン液のコンテナを使用しない場合は、処理 モジュールから取り外 すことができます。10.6.1.1 バルク試薬容器の無効化を参照。

図 2-16: 定位置に配置したBOND-MAX バルク試薬

各バルクコンテナのラベルの色と印刷された記述が装置のキャビティ、 つまりコンテナのすぐに下にあるラベルに一致していることを確認しま

外部廃液容器

BOND-MAX には9リットル外部廃棄用容器が付属しています。現在のモデルより前の装置に付属しているコンテナには、1個の容器のキャップに液体レベルセンサーコネクターがあり、コンテナを空にするために使用されます。現在のモデル BOND-MAX に付属しているコンテナには2つのキャップがあります。1つはコネクター用、もう1つは廃液の廃棄用です。これらのコンテナからコネクターキャップを決して取り外さないでください。

付属の容器には2つのキャップがあります。1つはコネクター用、もう1つは廃液の廃棄用です。コネクターキャップは決して、この容器から取り外さないでください。

図 2-17: BOND-MAX 外部廃液容器

凡例

- 1 センサーコネクタ
- 2 流路コネクタ
- 3 コンテナの内容物を廃棄する ための開口

流路 ラインは、処理 モデュールの後部 カバーの右下 にある押し込み型 コネクタに接続します。この液体レベルセンサーは、リヤカバーの左上の3 ピンコネクタに接続します(図 2-25を参照)。

外部 コンテナの内容物の廃棄、およびメンテナンスについては、12.2.4 外部廃液容器 (BOND-MAXのみ)を参照してください。

注意:外部廃液コンテナを空にする際は、必ずセンサーと流路コネクター(この順序で)を切断してください。ケーブルとチューブが接続されている場合は、コンテナから液体を出さないでください。

警告:免疫染色用試薬やin situ ハイブリダイゼーション用試薬の中には、有害なものがあります。続行する前に適切なトレーニングを受けるようにしてください。

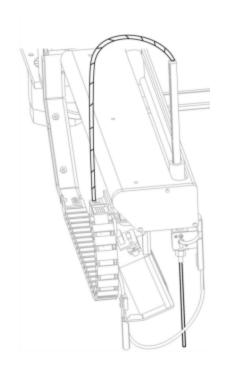
- 1 試薬の取り扱い時や処理モジュールのクリーニング時には、ラテックスまたはニトリル製の手袋、ゴーグル、およびその他の適切な保護服を着用します。
- 2 試薬や凝縮液を取り扱ったり廃棄する際には、施設現場に適用される手順や法規を遵守してください。

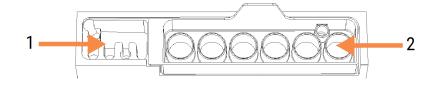
警告:BOND-III および BOND-MAX 処理 モジュールで使用 される試薬の中には、発火性のものがあります。

- 処理モジュールの近くに炎や発火源を置かないでください。
- バルク容器を再充填または空にした後はキャップがきちんと閉まっていることを確認してください。

2.2.8 吸引プローブ

吸引プローブによって容器の試薬を吸引し、スライド染色部品のスライドに送り、さらに混合ステーションの色原体と混合します.吸引プローブには、試薬水位を検出するための水位センサーが付いています(8.3.1 試薬量の決定を参照).




図 2-18: ロボットアームの吸引プローブ

各 コンテナには、プローブが届かない残留量が存在します.これは「デッドボリューム」で、コンテナの種類によって異なります(デッドボリュームの値についてはのを参照).これは「デッドボリューム」で、コンテナの種類によって異なります(デッドボリュームの値については 18.5 動作仕様の18 仕様を参照).

吸引プローブのメンテナンスについては、12.6吸引プローブを参照してください。

2.2.9 洗浄ブロックとミキシングステーション

図 2-19: ミキシングステーションを挿入した洗浄ブロック

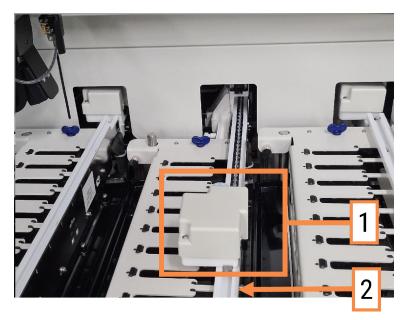
凡例

- 1 洗浄エリア
- 2 ミキシングステーショ ン

左側の洗浄エリアには、吸引プローブを洗浄するために小さな穴があります。

洗浄ブロックの右側には、6個のキャビティから成るミキシングステーションがあります。このキャビティは、調整後期限の短い試薬を使用する直前に混合するミキシングバイアルです。試薬の混合は、試薬の種類に応じてソフトウェアによって決定されます。

BOND ソフトウェアは、ミキシングステーションの状態をチェックし、ステーションの状態が清浄で空でない場合は BOND-III または BOND-MAX は初期化されません(5.1.2 ハードウェアステータスを参照)。初期化中にミキシングステーションが汚れていたり、その中に液体が入っていると通知された場合、ステーションが清浄で空であることを確認してから、通知ダイアログ内のOKをクリックします。汚れていたり液体が入ったままで作業を継続すると、試薬が汚染されたり、ミキシングバイアルがあふれたりする恐れがあります。



初期化中に、BOND システムはミキシングステーションのラベルをスキャンして、存在していることを確認します。BOND ソフトウェアがこのID を検出できなかった場合、ミキシングステーションが存在していることを確認するよう、メッセージが表示されます。

ミキシングステーションのメンテナンスについては、12.7洗浄ブロックとミキシングステーションを参照してください。

2.2.10 バルク溶液 ロボット(BOND-IIIのみ)

図 2-20: BOND-III のバルク溶液 ロボット(1)は、それぞれのスライド染色 ユニットのガイドレール(2)に沿って移動します。

警告:処理モジュールのフタが開いてから、約5秒以上メインロボットやバルク溶液ロボットが動作し続ける場合には、直ちにカスタマーサービスにご連絡ください。

BOND-III 処理 モジュールには、それぞれのスライド染色 ユニットのガイドレールに沿って移動し、存在する全てのスライドに対して試薬の分注を行う3台のバルク溶液ロボットがあります。吸引プローブが試薬プラットフォームの容器の試薬と一部のバルク試薬を供給するのに対し、ロボットはバルク試薬のみを供給します。それぞれのバルク溶液ロボットには、分注プローブのクリーニングを行う洗浄ブロックがあります。

2.2.10.1 手動でバルク溶液ロボットを定位置に戻す

バルク溶液 ロボットが作業を停止してスライド染色ユニットに沿った位置にある場合には、ロード/アンロード ボタンを押して定位置に戻します。バルク溶液 ロボットがスライド染色ユニット上にある場合には、以下の手順を行って手動でロボットを定位置に戻し、スライド染色ユニットからスライドを回収します。

- 1 処理 モジュールで何の処理 も予定 されておらず、また処理中でないこと、つまり待機状態であことを確認してから、電源を切ります。
- 2 バルク溶液 ロボットの分注ブロック(図 2-21を参照)を、プローブが上部プレートの上に来るまで静かに持ち上げます。
- 3 スライド染色 ユニットの後方へ、レールに沿ってロボットを押します。ゆっくりと、一定速度で押します 速 (押 さないこと。

ロボットが、上部プレートのレールをちょうど通過した位置まで押します。押せるだけ押しては**なりません**。

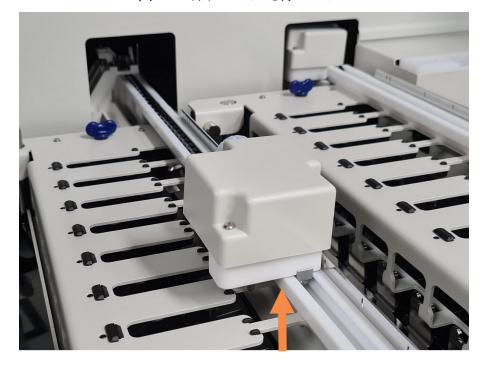


図 2-21: 分注ブロックを持ち上げる

- 4 ロボットが上部プレートを過ぎたら、フタを閉じて処理モデュールの電源を入れます。初期化動作の一部として、スライド染色ユニットがロック解除されるはずです。
 - スライド染色ユニットがロック解除されない場合、12.4.1 スライド染色ユニットを手動でロック解除を参照してスライドトレイを回収してください。
- 5 スライドトレイとスライドを回収します。

2.2.11 シリンジ

シリンジは、BOND システムに必要な正確な液量のバルク試薬液を吸引し分注します。シリンジ12.13 シリンジのメンテナンスについては、を参照してください。

警告:通常の操作時には、シリンジドア(BOND-MAX)が閉じていること、またはシリンジカバー (BOND-III)が取り付けられていることを確認してください。シリンジまたはシリンジのフィッティング が緩んでいる場合には、加圧された試薬が噴き出すことがあります。

2.2.11.1 BOND-III

BOND-III には、前部 カバーの下に4 台のシリンジポンプがあります。最初の3 台のシリンジポンプは、左から右に、それぞれ上記の SSA1、SSA2、および SSA3 でバルク溶液 ロボットに使用 されます。4 台目 のシリンジポンプ は吸引プローブに使用 されます。

図 2-22:BOND-III シリンジ

注意: まず、シリンジモジュール(12.4.1 スライド染色 ユニットを手動でロック解除を参照)が しっかりと取り付けられていることを確認してから、処理モデュールでの処理を開始または初期 化すること。処理中にシリンジが損傷することがあります。

2.2.11.2 BOND-MAX

BOND-MAX の処理 モジュールの右側のコンパートメントには1台のシリンジポンプが配置されています。これはスクリューインシリンジバレルと小型 クランプの付いた9ポートシリンジ(1個のポートは不使用)です。

図 2-23:BOND-MAX 9ポートシリンジ

シリンジュニットの状態を確認するには、ドアの正面中央の丸いタブを押して放し、ドアを開けます。

警告:必ず保護服と手袋を着用。

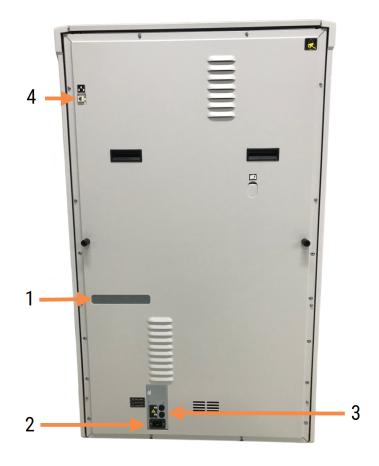
初期化中に定期的に確認し、必要な場合やプロンプトが表示された場合に交換します。12.13 シリンジを参照。

2.2.12 電源 スイッチ

このスイッチは、処理モデュールの右カバーに位置するロッカースイッチです。処理モデュールの電源オン/オフに使用します。

- BOND-III の電源スイッチの位置については、図 2-24を参照してください。
- BOND-MAX の電源 スイッチの位置 については、図 2-25を参照してください。

2.2.13 後部カバー



警告:処理モデュールのカバーを取り外したり、内部の部品に触れたりしないでください.BOND処理モジュール内には危険な高圧電源があるため、Leica Biosystems が認定した資格を持つ整備担当技術者のみが作業を行うことになっています。

2.2.13.1 BOND-III

図 2-24 は BOND-III 処理 モジュールの後部 カバーを示しています。

図 2-24: BOND-III後部 カバー

凡例

- 1 サーキットブレーカー(レガシー処理モジュールのみ)
- 3 主電源コネクター
- 4 イーサネットコネクター

- 2 ヒューズ
 - レガシー処理モジュール-4つのヒューズ
 - 代替処理モジュール-2つのヒューズ

ヒューズの交換については、12.14電源ヒューズを参照してください。

警告:処理 モジュールを持ち上げる際には、BOND-IIIの後部カバーパネルに2本ある黒色のハンドルを使用しないでください。

2.2.13.2 BOND-MAX

図 2-25 は BOND-MAX 処理 モジュールの後部 カバーを示しています。(旧 モデルには処理 モジュールの電源供給 ファンが 1 つしかないものもあります。)

図 2-25:BOND-MAX 後部 カバー

凡例

- 1 サーキットブレーカー(レガシー処理モジュールのみ)
- 2 電源ファン
- 3 ヒューズ
 - レガシー処理モジュール-4つのヒューズ
 - 代替処理モジュール-2つのヒューズ
- 4 主電源コネクター

- 5 外部廃液用接続部 チューブ用(12.2.4 外部 廃液容器(BOND-MAXのみ)を参照)
- 6 外部廃液用接続部 液体レベルセンサー用 (12.2.4 外部廃液容器(BOND-MAXのみ)を参照)
- 7 イーサネットコネクター

ヒューズの交換については、12.14電源ヒューズを参照してください。

2.2.13.3 処理モジュールの切断

BOND-III または BOND-MAX 処理 モジュールを主電源 から切断 するには、以下の手順に従ってください。

- 1 処理モジュールの右側のスイッチを用いて、電源をオフにしてください。
- 2 処理 モデュールの主電源接続部(図 2-24の3 および図 2-25の4)から壁面まで電源ケーブルを辿って、コンセントの主電源のスイッチをオフにしてください。コンセントの主電源のスイッチをオフにしてください。
- 3 処理モジュールの背面からプラグを抜いてください。

2.3 BOND コントローラーとターミナル

BOND-ADVANCE インストレーション (3.1.2 BOND-ADVANCE を参照) 使用施設は、5 台以上のモデュールに加えて、BOND ターミナルがあります。このインストレーションの場合、ほとんどのBOND ソフトウェアとのユーザーのやりとりはターミナルで行われ、各ターミナルは全ての処理モデュールをコントロールすることが可能です。また、複数のターミナルから同じ処理モデュールをコントロールすることも可能です。

BOND コントローラーは、全てのソフトウェア処理を実行し続けます。BOND-ADVANCE インストレーションのコントローラーの仕様は、シングルシートのインストレーションの仕様よりも高度で、信頼性を向上させるために複数レベルの冗長化機能を含んでいます。

一部のBOND-ADVANCE インストレーションには、第二 (バックアップ) コントローラーが含まれています。このコントローラーは、第一コントローラーの全てのプロセスを記録し、一次コントローラーが故障した場合、切り替わることができます。理想的には、第二コントローラーは、一次コントローラーを近くに配置するべきではありません。これは、局所的な事故によって両方のコントローラーが破損する可能性を低下させるためです。

スライドラベルプリンターとハンディバーコードスキャナーは、シングルシートのインストレーションではコントローラーに接続され、BOND-ADVANCEインストールでは各ターミナルに接続されます。

注意:BOND コントローラーのオペレーティングシステムとソフトウェアは、BOND システムを最適な方法でコントロールするよう設計されています。システムコントロールの遅れや妨害を防止するため、BOND コントローラーやターミナルに追加ソフトウェアをインストールしないでください。

2.4 ハンディバーコードスキャナー

図 2-26: ハンディバーコードスキャナー

USB ハンディバーコードスキャナーは、コントローラー(シングルシートインストレーション)またはターミナル (BOND-ADVANCE のインストレーション) に装着されます。このハンディバーコードスキャナーは試薬の登録に使用するためのもので、さらに、スライドの識別にも使用できます(6.5.6 手動でスライドを識別するを参照)。

1次元およびOCR バーコードの作成は、BOND バージョン7以降ではサポートされていません。

システムアップグレードにBOND-PRIME処理モジュールが含まれている場合は、2次元バーコードスキャナーを使用する必要があります。13.1.3 Zebra DS2208 バーコードスキャナーを参照してください。

BOND システムをインストールする際に、同時にハンディバーコードスキャナーをインストールすると、それも使用可能になります。メンテナンスおよび設定方法については、13.1 ハンディバーコードスキャナーを参照してください。

2.4.1 ハンディバーコードスキャナーの使用方法

以前のSymbolバーコードスキャナーはレーザー光を放射します。これに対し、最近のZebraバーコードスキャナーはLED光を放射します。以下のレーザーハザードの警告に注意してください。

警告:レーザーハザード。重度の眼障害を生じるおそれがあります。レーザー光線を直視しないでください。

バーコードを読み取るには、バーコードにスキャナーを向け、トリガーを押します。赤い線が、バーコードの全長に広がるように合わせます。バーコードが認識されると、スキャナのビープ音が鳴り、インジケーターが緑色に変わります。バーコードが認識されない場合、スキャナのビープ音が鳴り、インジケータが赤色に変わります。

スキャナをバーコードにあまり近づけないでください。スキャナーがバーコードを認識しない場合は、バーコードとの距離を大きくするか、バーコードを45度の角度でスキャンします(スキャナーへのフィードバックを防くため)。

スキャナーをスタンドに置いてハンズフリー方式で使用する場合、バーコードを読み込ませるときにトリガーを押す必要はありません。

2.5 スライドラベラー

シングルシートの BOND システムにはスライドのラベルプリンター(「スライドラベラー」と呼ばれる) 1 台 が含 まれており、これはコントローラーに接続されています。BOND-ADVANCE インストレーションの場合、各 ターミナルに個別にスライドラベラーが接続されています。

スライドラベラーは、スライド識別用のラベルステッカーを印刷します。すべてのラベルには 2D バーコードとして表示 される固有のスライドID が記載されています(10.5.2 ケースとスライドの設定を参照)。処理モデュールにスライドがロードされると、BONDは、IDを使用して自動的にスライドを識別します。また、ID以外の情報もラベルに表示するように設定することができます-10.3 ラベルを参照。

一部の施設では LIS を用いてスライドラベルを印刷していますが、システムには、BOND クライアントで作成したスライドが使用できるように、BOND スライドラベラーが装着されています。

スライドラベラーは、標準 BOND インストレーションの一部 として設定されています。スライドラベラーの追加や交換の場合、管理者のハードウェア画面(10.6.3 スライドラベラーを参照)で設定します。ラベルとリボンの交換やクリーニングについては、ラベラーに付属の資料をご覧ください。

警告: BOND 用のスライドラベルと印字リボンのみを使用してください。このラベルは、BOND 処理モジュールの処理中も貼り付けたままにし、識別可能な状態でなければなりません。

2.6 付属備品

本セクションでは、BONDシステムとともに使用する付属備品について説明します。

- 2.6.1 スライド
- 2.6.2 BOND Universal Covertiles
- 2.6.3 試薬システムと容器

BOND-PRIME の消耗品については、別書の BOND-PRIME ユーザーマニュアルを参照してください。

2.6.1 スライド

BOND-III および BOND-MAX 処理 モジュールに適したサイズのガラススライドのみを使用してください。スライドのサイズが違うと、スライドトレイに正しく装着できないことがあり、Covertileが正しく配置されません。これによって、染色に、影響をおよぼすことがあります。

Leica Biosystems では、BOND システムで使用 するように設計 された Leica BOND Plus スライドとApex BOND スライドを推奨しています。このプラスに帯電したスライドは、BOND スライドトレイや Covertile に最適なサイズであるだけでなく、100 μ L および150 μ L の分注用に組織の配置位置がマークされています (6.5.8 分注量 とスライド 上の組織の位置を参照)。

それ以外のスライドを使用する時は、以下の仕様に適合していることを確認してください。

寸法	幅:24.64~26.0 mm(0.97~1.02 in)				
	長さ: 74.9~76.0 mm(2.95~2.99 in)				
	厚さ: 0.8~1.3 mm(0.03~0.05 in)				
ラベル領域	幅:24.64~26.0 mm(0.97~1.02 in)				
	長さ: 16.9~21.0 mm(0.67~0.83 in)				
素材	ガラス、ISO 8037/1				

注意:破損したスライドは使用しないでください。処理モデュールにロードする前に、スライドトレイ上に全てのスライドが正しく配置されていることを確認ししてください。

注意:端が丸まっていたり欠けているスライドは使用しないでください。トレイから落下したり Covertile との間の試薬の流れが悪くなり、染色に影響が出る恐れがあります。

2.6.2 BOND Universal Covertiles

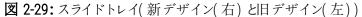
BOND Universal Covertile とは、染色時にスライドの上に載っている透明なプラスチックのカバーのことです。組織が静かにかつ均一にカバーされるように、毛細管現象を応用して Covertiles とスライド間に分注された試薬が流れます。Covertile を用いることによって、必要な試薬量が最小限に抑えられ、スライドの乾燥を防ぐことができます。Covertile は、BOND 染色システムに不可欠です。

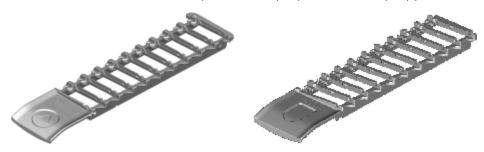
スライドトレイにスライドを設置した後、スライドの上に Covertile を配置します (4.1.3.5 スライドのロードを参照)。 Covertile が、キーが各 Covertile のネック (写真右の丸で囲んだ部分)に正し、配置され、スライドトレイの溝に入っていることを確認します。

Covertile には、2種類のデザインがありますが、どちらも、使用できます。新しいデザインは、Covertile を誤ってスライド上に置いた場合に発見しやすいような仕様 (Leica の文字、小さな円形の印、左上の突起)になっています。

図 2-27: BOND Universal Covertile (当初のデザイン)

図 2-28: BOND Universal Covertile (新しいデザイン)


Covertile は、強い着色や傷がな (適切 にクリーニング されていれば、25 回まで再使用可能です (12.3 Covertile を参照)。ダメージのある Covertile は、廃棄してください。


一部のアッセイには、新しい(未使用の)Covertileを使用する必要があります。あらかじめアッセイの使用説明書を確認しておいてください。

2.6.2.1 スライドトレイ

スライドをBOND-III または BOND-MAX 処理 モジュールにロードする時は、スライドトレイを使用して、スライドと Covertile を定位置に維持してください。スライドトレイ1 つにつき、スライド10 枚まで収納可能です。

スライドトレイには2つのデザインがあり、お互いに交換して使用できます。

処理モジュールにスライドとCovertileをロードする方法は、4.1.3.5 スライドのロードを参照してください。

2.6.2.2 試薬トレイ

試薬トレイは、BOND 試薬 コンテナ(7 mL、30 mL)、および BOND タイトレーションキット(6 mL) をセットします。トレイを試薬プラットフォームの処理モデュールにロードします(2.2.6.5 試薬プラットフォームを参照)。

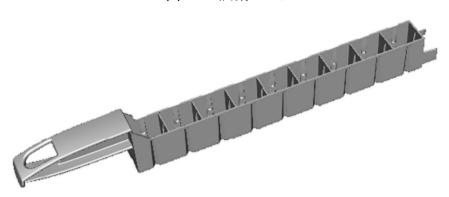


図 2-30: 試薬トレイ

試薬トレイ内での容器の位置には番号が順番に付けられており、ハンドルから一番遠い端が位置1で、ハンドルに一番近い端が位置9になります。

処理モデュールに試薬をロードする方法は、4.1.4試薬のロードを参照してください。

2.6.3 試薬システムと容器

試薬トレイには、様々な種類の試薬容器を使用することができます。

2.6.3.1 試薬システム

試薬システムは、試薬トレイにあらかじめ定義された試薬セットです。BONDでは、以下の2種類の試薬システムを使用します。

- BOND 検出 システム
- BOND クリーニングシステム

各システムの詳細については、8.1試薬管理の概要を参照してください。

試薬システムは、コンポーネントコンテナのバーコードラベルをスキャンするのではなく試薬トレイの側面にあるバーコードをスキャンして登録します。システムを構成する試薬コンテナは、個別に登録ではなくトレイにロックされているので、取り外したり、配置変更はできません。試薬システムが枯渇したり期限切れになったら、トレイとコンテナを廃棄してください。

2.6.3.2 BOND 希釈済抗体

BOND 希釈済抗体のコンテナは、試薬トレイにぴったりとフィットします。この試薬は既にBONDシステムに最適な濃度となっていますので、登録して開封するだけで使用できます。

容器は試薬の種類に応じて、3.75~30mLの容量があります。

2.6.3.3 オープン容器

オープンコンテナとは清浄な空のコンテナで、ユーザーが用意した試薬を入れることができます(一次抗体など)。容量は7 mL と30 mL です。オープンコンテナには、1 種類のみの試薬を入れ、また再充填して40 mL まで、試薬を再充填することが可能です(8.3.2.4 オープン試薬容器の再充填を参照)。

BOND システムには BOND オープンコンテナのみを使用してください。ユーザーが用意した試薬についても別のコンテナを使用しないでください(タイトレーションコンテナを除 ◊。

2.6.3.4 タイトレーションコンテナ

特殊用途のタイトレーションキットも入手できます(14.2.1.4 タイトレーションキットを参照)。着脱可能な6 mLのインサートが含まれていますので、濃度の最適化中などにコンテナ内の試薬を簡単に変更できます。オープンコンテナと同様にタイトレーションコンテナも再充填が可能であり、最大 40 mL の試薬の供給に使用できます。BONDの Leica Biosystems タイトレーションキットには、コンテナ1個につきインサート5本が付属しています。

キットはさまざまな抗体に再利用することができ、最小のデッドボリュームで試薬を維持するよう設計されています。

2.7 処理モジュールの移動

警告:処理モデュールを修理または処分するために長距離の移送をする際や輸送する際には、カスタマーサービスにご連絡ください。処理モジュールは重く、ユーザーが移動できるように設計されていません。

注意: 処理 モジュールの後部 カバーにある通気口 をふさがないでください。また、シリンジドア (BOND-MAX) 上にある通気口 をふさがないでください)。

BOND 処理 モジュールを少しだけ移動するときには、移動する前に以下の点について検討してください。

- 床が、処理モジュールの重量に耐えられることを確認します。寸法については18.2 物理仕様の18 仕様を参照し、移動前に地域の要件を確認してください。
- 処理モデュールの操作をする前に、干渉を防ぐため電磁環境に関する評価を行います。
- BOND 処理 モジュールを強力 な電磁波 の発生源の近くで使用しないでください。たとえば、遮蔽されていない高周波発生装置などは正常な動作を妨害する可能性があります。
- BOND 処理 モジュールはフォークリフトで持ち上げないでください。
- 付属の電源 コードのみを使用し、また、コードを差し込んでいる電源にオペレーターがアクセスができることを確認します。
- 移動 する前に、電源コードとイーサネットケーブルが切断されていることを確認します。
- 十分な換気をしてください。
- 移動するに廃液容器を空にしてください。
- 移動の前に、BOND-III 処理モジュールの4個の車輪(BOND-MAXの場合はトロリー)のロックを解除してください。新しい場所に移動したら車輪を再びロックします。

2.8 装置の停止と廃棄

使用済みの部品や関連するアクセサリーを含む装置は、該当する地域の手順および規制に従って廃棄する必要があります。装置で使用された試薬は、試薬の製造業者の推奨事項に従って廃棄してください。

装置または部品やアクセサリーを返却または廃棄する前に、地域の手順および規制に従って、これらのクリーニングおよび汚染除去を行ってください。

EUでは、すべての電子廃棄物は、廃電気電子機器(2012/19/EU)に従って廃棄する必要があります。EU以外の地域では、電子廃棄物の廃棄に関する地域の手順および規制に従ってください。

サポートが必要な場合は、Leica Biosystemsの現地代理店にお問い合わせください。

3 ソフトウェアの概要(BONDコントローラ上)

本章は、BOND ソフトウェアの一般的機能に慣れていただくために作成されました。ソフトウェアを使用して処理モデュールを使用し、スライドやケースや試薬を管理する方法については、該当する各章をご覧ください。管理者に関する指示については10管理者クライアント(BOND コントローラー上)をご覧ください。

- 3.1 システムの構造
- 3.2 BOND ソフトウェアの起動 とシャットダウン
- 3.3 ユーザーの役割
- 3.4 臨床 クライアントインターフェースの概要
- 3.5 BOND-ADVANCEダッシュボード
- 3.6 通知、警告、アラーム
- 3.7 レポート
- 3.8 ヘルプ
- 3.9 BOND について
- 3.10 BOND データ定義
- 3.11 ソフトウェアの更新

3.1 システムの構造

ューザーは、2つの「クライアント」(実際には2つの別々のプログラム)を通じてBOND ソフトウェアとやり取りします。これらは、臨床クライアント(単に「クライアント」とも呼ぶ)と管理者クライアントです。臨床クライアントは日常の操作向けで、たとえば、試薬、プロトコール、ケースとスライドを処理できるように設定したり、その後、処理モデュール上で処理を監視および制御したりするために使用されます。管理者クライアントは、初期設定後にまず変更されることがない高度な設定を行うために使用されます。高度な設定の例として、スライドラベルの設定、ハードウェアの接続、ユーザーアカウントが挙げられます(10管理者クライアント(BOND コントローラー上)を参照).

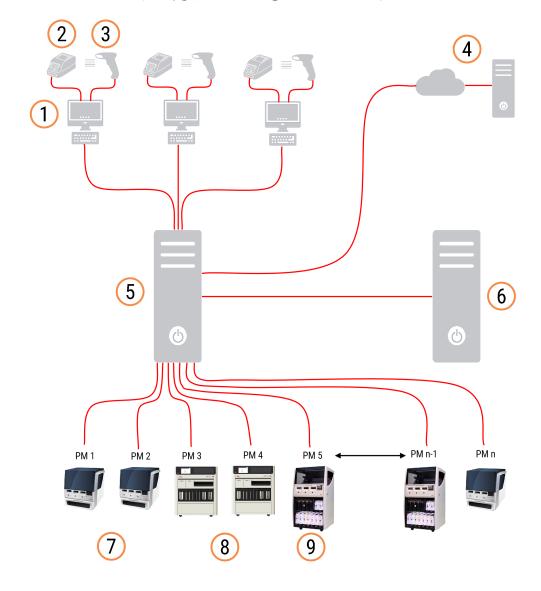
- 3.1.1 シングルシート構成
- 3.1.2 BOND-ADVANCE

3.1.1 シングルシート構成

シングルシートインストールでは、BOND ソフトウェアとの唯一のユーザー相互作用ポイントとして(また、それを通じて処理モデュールを制御する)「BOND コントローラー」が1台のみ装着されています。BOND コントローラーは、システムのソフトウェアの処理を全て実行し、ケースとスライドに関する情報が保存されているシステムのデータベースを維持します。このインストールにはキーボード、マウス、モニター、スライドラベルのプリンター、スキャナーが装着されます。

シングルシートインストールには、処理モデュール5台までの制限があります。もっと多くの処理モデュールが必要な場合は、BOND-ADVANCEにアップグレードしてください。

図 3-1:シングルシートインストールの図


3.1.2 BOND-ADVANCE

5台以上の処理モデュールを用いたBONDインストールは、マルチシートのBOND-ADVANCEインストールとして構成されます。BONDコントローラーはシステム全体の全てのソフトウェア処理を実行しますが、大部分の入力項目はコントローラーが制御する処理モデュールの作業セル(BOND-ADVANCEソフトウェアの「ポッド」と呼ばれる)周辺に配置されるBONDターミナルから入力されます。ポッドは管理者クライアントで定義されます。

コントローラーに接続されたモニターには、システム内の全処理モデュールのリアルタイムステータスを要約する 「BOND ダッシュボード」が表示されます (3.5 BOND-ADVANCEダッシュボードを参照)。また、ダッシュボードは、要請があれば、専用ターミナルに接続することができます。管理者は任意のターミナルから実行することができます。

一部の施設には、第二 コントローラーが装着されることがあります。第二 コントローラーは、第一 コントローラーが故障した場合に、リアルタイムで全 BOND データをバックアップして切り替えることができます。この方法の詳細については、16.2 第二 コントローラーへの切り替えを参照してください。

図 3-2: BOND-ADVANCEインストールの図 - BOND-ADVANCEターミナルはBOND-ADVANCEコントローラーを通して、ポッドの処理モデュールをコントロールします。

凡例

- 1 BOND-ADVANCE ターミナル
- 2 スライドラベルプリンター
- 3 バーコードスキャナー
- 4 LIS接続
- 5 BOND-ADVANCE第一 コントローラー

- 6 BOND-ADVANCE第二 コントローラー
- 7 BOND-MAX処理モジュール
- 8 BOND-PRIME処理モジュール
- 9 BOND-III処理モジュール

3.2 BOND ソフトウェアの起動 とシャットダウン

3.2.1 BONDソフトウェアの起動

BOND ソフトウェアは、接続されている処理モデュールを起動する前でも後でも起動できます.ソフトウェアを起動するには、

1 シングルシート:必要に応じて、BONDコントローラーを起動し、ユーザー「BONDUser」としてWindows®にログオンします。システムが新しい場合、初期パスワードは設定されていません。ただし、パスワードが設定されている場合は、詳細について、施設の責任者にお問い合わせください。

BOND-ADVANCE: 必要に応じて、BOND-ADVANCE コントローラーを起動します。すると自動的にダッシュボードが開きます(開かない場合は、Windows デスクトップ上の **BONDDashboard**ショートカットをダブルクリックします。<F11> を押すと、Internet Explorer がフルスクリーンモードに設定されます)。

必要なターミナルを起動して、ユーザー「BONDUser」としてWindows にログオンします。

- 2 該当するデスクトップアイコンをダブルクリックすると、臨床クライアントまたは管理者クライアントが起動します(もしくはその両方 両者は同時に実行できます)。
- 3 BONDユーザー名とパスワードを入力します。 システムでクライアントを開いている場合は、接続先のポッドを選択することができます。 BOND-ADVANCE

BOND-ADVANCE臨床クライアントは、前回選択したポッドを記憶しています。

パスワードはログオンダイアログからいつでも変更することができます。パスワードの変更頻度およびパスワード強度は、施設の業務基準に従ってください。BONDのパスワードについての要件は、4-14文字、かつ1つ以上の数字が含まれていることです。

BOND-PRIME ユーザーの場合は、処理 モジュールの PIN を設定 または変更 することもできます。以下の 3.2.2 BOND-PRIME 処理 モジュールの PIN の設定 または変更 を参照してください。

4 ログオンをクリックします。

このシステムは、選択に応じて臨床クライアント画面または管理者クライアント画面を表示します。タイトルバーには、現在ログオン中のユーザー名が表示されます。別のユーザーから引き継いだ場合は、元のユーザーをログアウトし、自分のユーザー名で再ログオンしてください。BOND-ADVANCEでは、タイトルバーに現在選択されているポッドも表示されます。

警告:BONDソフトウェアは重要なハードウェアをコントロールし、機密データを保存するため、BONDコントローラーで他のアプリケーションを実行してはなりません。実行するとBONDシステムの保証が無効になります。汎用コンピューティングには、BONDコントローラーを使用しないでください。

3.2.2 BOND-PRIME 処理 モジュールの PIN の設定 また は変更

1 ログオンダイアログで、処理モジュールの PIN の設定をクリックします。

図 3-3: 臨床 クライアント/管理者 クライアント用のログオンダイアログ

- 2 BONDユーザー名とパスワードを入力します。
- 3 4桁のPINを入力して、以下のようにPINを確定します。

図 3-4: 処理 モジュールの PIN の設定 ダイアログ

4 **OK**をクリックします。

デスクトップの背景

現在ログオンしているWindows ユーザーの種類と、現在接続されているコントローラーやターミナルの役割を区別するために、異なるWindows デスクトップの背景が使用されます。

シングルシート

通常は、「コントローラーBONDUser」背景が表示されますが、サービスエンジニアが現場にいるときには、「コントローラーBONDService」背景が表示される場合があります。図 3-5を参照。

図 3-5: BOND シングルシートのデスクトップの背景:「コントローラー BONDUser」と「コントローラー BONDService」

BOND-ADVANCE

BOND-ADVANCE のデスクトップの背景には、接続されているコントローラーのアイコン、またはターミナルのアイコンが、その役割に応じて変化します。 図 3-6 の例を参照してください。

図 3-6: ターミナル、スタンドアロンのコントローラー、一次 コントローラーと第二 コントローラーのアイコン

また、ユーザーのタイプを表す種々のアイコンが表示されます。図 3-7を参照。

図 3-7: BONDUser、BONDService、BONDControl、BONDDashboard の各 アイコン

3.2.3 BONDソフトウェアのシャットダウン

クライアントまたは管理者をシャットダウンするには、ファンクションバーにあるログアウトアイコン します。ユーザーを変更する必要がある場合は、処理中に臨床クライアントをシャットダウンすることができま す。ただ、アラームや警告が発せられないので、クライアントを開かずに処理モジュールを実行し続けないでく ださい。

処理中は絶対にBOND コントローラーをシャットダウンしてはなりません。 完全にBOND システムを閉じる際は、 処理モデュールをオフにする前または後に、ソフトウェアをシャットダウンすることができます。

ユーザーの役割

BOND システムには、次の3つのユーザーの役割があります。

- オペレーター: 試薬の在庫を更新し、ケースとスライドを作成し、染色処理を起動・制御し、医師を作 成して編集し、レポートを作成することができます。
- 監督者:プロトコール、試薬、パネルを作成して編集することができます。
- 管理者: 管理者 クライアントにアクセスして、BOND ユーザーを管理し、システム全体を設定することが できます。

1人のユーザーに複数の役割を割り当てることができます。 監督者には、自動的にオペレーターの役割が割 り当 てられます。管理者の役割を持つユーザーのみが管理者 クライアントを実行でき、オペレーターまたは監 督者の役割を持つユーザーのみが臨床クライアントを実行できます。

ユーザーの作成とその役割の設定は、管理者クライアントのユーザー画面で行います(10.1 ユーザーを参 照)。

現在ログインしているユーザーのユーザー名がクライアントウィンドウのタイトルバーに表示され ます。

3.4 臨床 クライアントインターフェースの概要

臨床 クライアント画面の上と左には、ソフトウェアの全ページに共通の機能が表示されます。このセクションでは、こうした機能とソフトウェアの一般機能について説明します。

- 3.4.1 ファンクションバー
- 3.4.2 処理モデュールタブ
- 3.4.3 表の並べ替え
- 3.4.4 日付のフォーマット

3.4.1 ファンクションバー

ファンクションバーはソフトウェア画面の上にあり、そこからソフトウェアの主要なセクションに素早BOND 〈アクセスできますBOND。

画面にアクセスしたり特定の機能を実行するには、下表に記載されているように、ファンクションバーのアイコンをクリックします。

アイコン	表示されている画 面(または実行さ れる機能)	目的
スライド設定	スライド設定	BOND ソフトウェアでケースを作成し、スライドを設定します。 詳細については、6 スライド設定(BOND コントローラー上)を参照してください。
プロトコール設定	プロトコールの設 定	プロトコールを編集および管理します。 詳細については、7プロトコール(BOND コントローラーで)を参照してください。
武薬の設定	試薬の設定、試 薬の在庫、および 試薬パネル(3タ ブ)	新しい試薬を設定し、試薬の在庫を管理し、さらに試薬パネルを作成します(マーカーの組を使用すれば、スライド作成が迅速にできます)。 詳細については、8 試薬管理 (BOND コントローラー上)を参照してください。
スライド履歴	スライド履歴	BOND システムで処理 されたスライドの詳細 を表示して、個々のスライドの詳細、処理、およびケースの詳細を表示し、さまざまなレポートを生成します。 詳細については、9 スライド履歴(BOND コントローラー上)を参照してください。

アイコン	表示されている画 面(または実行さ れる機能)	目的
検索	検索	バーコードをスキャンするか、手動でスライドID または試薬IDを入力して、スライド、試薬コンテナおよび試薬システムを識別します。検索内容(スライドまたは試薬)がシステムによって自動的に識別される場合は、総合検索ダイアログが使用されます。 詳細については、6.5.6 手動でスライドを識別するまたは8.1.1.3 試薬の識別を参照してください。
~\IJ ()	ヘルプ	本 ユーザーマニュアルが開 きます。
ログアウト ◆①	ログアウト	クライアントのログアウト
	バックアップ失敗	データベースのバックアップが正常に完了しませんでした。 詳細については、10.5.3 データベースバックアップを参照してください。
	LIS切断中	LISモデュールはインストールされていますが、現在のところ、LISには接続されていません。 詳細については、11.3 LISの接続と初期化を参照してください。
	LIS接続中	LISモデュールはインストールされており、現在のところ、LISに接続されています。 詳細については、11.3 LISの接続と初期化を参照してください。
	LIS通知	未解決のLIS通知数 詳細については、11.4 LIS通知を参照してください。

画面の左上にLeica Biosystems のロゴがあります。これをクリックすると、BOND 概要ダイアログが表示されます。 $3.9\ BOND\ についてを参照$ 。

画面の右上に警告アイコンとステータスアイコンが表示されることがあります。11 LIS インテグレーションパッケージ(BOND コントローラー上) と10.4.2 変更追跡記録を参照してください。

3.4.2 処理モデュールタブ

BOND-PRIME 処理 モジュールの場合は、これらのタブは表示されません。BOND-PRIME 処理 モジュールに関するシステムステータスとメンテナンスについては、別書の BOND-PRIME ユーザーマニュアルを参照してください。

インターフェイスの左のタブで、クライアントが接続されているポッド内の各処理モデュールのシステムステータス、プロトコールステータス、およびメンテナンスの各画面を開くことができます。タブ自体にも、各処理モデュールの現状に関する情報が表示されます(5.1.1 処理モデュールタブを参照)。

図 3-8:処理 モデュールタブ(BOND-MAX)

システムステータス画面は各処理モデュールの状態を表示し、プロトコールステータス画面は処理中のプロトコールの進行状況を表示します。メンテナンス画面には、種々のメンテナンス操作コマンドがあります。

3.4.3 表の並べ替え

BOND ソフトウェアの画面の多くが、表の形式でデータを表示します。列の見出しをクリックすると、その列の値が並べ替えられます。上向きの三角形が見出しの横に表示されている場合は、昇順 (0-9 A-Z) に並べ替えられていることを示します。再度クリックすると下向きの三角形が表示され、降順に並べ替えられていることを示します。

列 を2 本並べ替 えるには、並べ替 えたい最初の列 をクリックして、次に、<Shift> キーを押したまま2 番目の列 をクリックしてください。最初の列の値の順序は変わりませんが、第1列目と同じ値の列が複数ある場合には、第2列の値で並べ替えられます。

また、列の幅のサイズを変更したり、列をドラッグして表中の別の位置に移動させることもできます。

表の並べ替えや列の幅と位置の変更は全て、ログアウトするまで保持されます。

3.4.4 日付のフォーマット

シングルシートインストールでは、ソフトウェアやレポートの日時は、BOND コントローラーのオペレーティングシステムで設定されたフォーマットが使用されます。BOND-ADVANCE インストールでは、ターミナルで設定されたフォーマットが使用されます。日付の短いフォーマットと長いフォーマットでは、それぞれ、最長、12文字、28文字が使用できます。

3.5 BOND-ADVANCEダッシュボード

このセクションは、BOND-PRIME 処理モジュールには適用されません。

BOND-ADVANCEのインストールでは、コントローラーまたはターミナルに接続されたモニターにBONDダッシュボードが表示されます。これには、システム内の全処理モデュールのステータスサマリーがリアルタイムで表示されます。

₩ 20. DOND # . . . # - !!

凡例

- 1 アラームが発生している処理モジュール
- 2 警告が発生している処理モジュール
- 3 通知が発生している処理モジュール
- 4 処理が終了した処理モデュール
- 5 スライド染色 ユニットのステータスを表示する、個々の処理 モデュールペイン

画面上部には、左から右の順に、アラーム、警告、通知、および処理が終了した処理モジュールを示す4つのアイコンがあります。1つの分類に複数の処理モジュールがある場合、各処理モデュールでアイコンが順々に変化して表示されます。

一番上の行の下にはシステム内の各処理モデュールごとのペインがあり、その名前のアルファベット順に表示されます(これは管理者で設定されます)。これらのペインには、処理モデュール内の3つのスライド染色ユニットのステータスと、処理モジュール全体に適用される一般的なステータスインジケーターが表示されます。

ダッシュボードのアイコン

アイコン	内容
A	処理モジュールからアラームが発せられています。
•	処理モジュールから警告が発せられています。
0	処理 モジュールは通常 どおり稼働しています。タイムスタンプの背景は白色です(^{00:14:28})。
②	少なくとも1つのトレイで処理が正常に完了し、そのトレイをアンロードできる状態になっています。タイムスタンプの背景は緑色です(00:11:36)。
	処理モジュールから通知が発せられています。
-Č⊬	処理モジュールの接続が解除されました。

警告や通知のある処理モデュールや処理が終了した処理モデュールは、ディスプレイ上部の該当する位置に表示され、その下に、アルファベット順で、個別のパネルで表示されます。

3.5.1 スライド染色 ユニットのステータス

このセクションは、BOND-PRIME 処理モジュールには適用されません。

各 スライド染色 ユニットのステータスは処理 モデュールペインに表示 されます。以下 の3のつのステータスの分類があります。

- ロック済 スライドトレイがロックされると表示されます。時刻は表示されません。
- **処理中** トレイで処理が開始されたことを示しています。**時間**の列には、処理の残り時間が、時間、分、秒で表示されます。
- 完了 処理が完了しています。時間の列には、処理終了後からの経過時間が、時間、分、秒で表示され、背景は緑色になります。

ロックされていないトレイでは、行は空白になっています。

ダッシュボードとやりとりを行うことはできません。ダッシュボードに、要注意の処理モデュールがあることを示すメッセージが表示された場合、BOND-ADVANCEターミナルを通して操作する必要があります。

3.6 通知、警告、アラーム

BONDシステムには、3種類の警告レベル(通知、警告、アラーム)があります。それぞれの警報は、警報メッセージの対象となる項目または近くのシステムステータス画面に、アイコン表示されます。現在表示されている画面に関係なく処理モデュールのタブに、それに対応する警報アイコンが表示されることがあります(5.1.1 処理モデュールタブを参照).BOND-ADVANCEでは、警告はダッシュボードにも表示されます(3.5 BOND-ADVANCE ダッシュボードを参照)。

警告アイコンを右クリックし、**注意メッセージ**を選択すると、警告状態の詳細を示すダイアログが起動します。 3段階の警告レベルとそれに関連したアイコンについては以下で説明します。

通知

常時点灯

処理を開始するか処理の遅延を防止するために、直ちにもしくは後で何らかの行動を必要とする状態に関する情報を通知する

警告

処理の遅延を防止するために、直ちに行動を必要とする。処理が遅れると染色に支障を来すことがあります。

常時点灯

点滅

アラーム

ただちにに行動を必要とする。処理モジュールでスライドを処理している場合は、一時停止され、警告状態を修正するまでは再開できません。処理が遅れると染色に支障を来すことがあります。

警告:このアイコンが表示されたらできる限り早く必ず警告とアラームメッセージをお読みください(特に現在処理が進行中である場合)。直ちに対応すればスライド染色の不具合を回避できる可能性があります。

また、処理中に発生する通知はできるだけ早く対応するようお勧めします。

3.7 レポート

BOND ソフトウェアは、レポートを多数作成します。これらのレポートは新しいウィンドウの「BOND レポートビューワ」で開きます。時刻、場所、処理モジュールなど、そのレポートの一般情報はレポートの見出しに記載されます。レポートページの脚注には、各レポートの作成日時とページ番号が表示されます。

特に多数の処理モデュールを装備している処理量の多い施設では、一部のレポート、特にケースやスライドまたは試薬の情報を含むレポートの作成に数分を要する場合があります。

BOND レポートビューワには、ナビゲーションと表示と出力のオプションがわずかにあります。標準印刷ダイアログを開いてプリンターを選択して設定したり、印刷したいページを選択したり、PDF、XLS、CSV、テキストなど各種のフォーマットでレポートをエクスポートすることができます。

ページアップ、ページダウン、ホーム(最初のページ) とエンド(最後のページ) など、ナビゲーションのためのさまざまなキーボードショートカットを使用することができます。また、キーボードのショートカットで利用できる機能もあります。例えば、Ctrl-Fで検索ダイアログが表示され、Ctrl-Sで保存ダイアログボックスが開き、Ctrl-Pで印刷ダイアログが開きます。

BOND のレポートは、以下のセクションに記録されます。

- 5.3.1 メンテナンスレポート
- 6.7 スライド設定のサマリーレポート
- 7.5 プロトコールレポート
- 8.3.4 在庫詳細レポート
- 8.3.5 試薬の使用レポート
- 9.4 処理イベントレポート
- 9.5 処理詳細レポート
- 9.6 ケースレポート
- 9.8 スライドサマリー
- 9.10 簡 単 なスライド履歴
- サービスログ

さらに、スライドの情報をCSV (カンマ区切り値) ファイルフォーマットでエクスポートすることもできます。9.9 データのエクスポートを参照。

3.7.1 レガシーレポート

BOND システムで、ソフトウェアのバージョン 4.0 からアップグレードされた場合、アップグレード前のケースとスライドデータは、アップグレード後のデータベースに移動しません。ただし、古いデータ(「レガシー」データと呼ばれる) は利用可能です。これにアクセスするには、次の順に開きます: **スタート>全てのプログラム> Leica > BOND Legacy Report Viewer**。するとバージョン4.0のBONDソフトウェアが開きます。**スライド履歴**画面上で処理済みのスライドを表示して、バージョン 4.0 と同様な方法でレポートを作成します。バージョン 4.0 の場合と同様に、レポートウィンドウからレポートを印刷したり、PDF フォーマットで保存したりできます。これを行うには、ファイル> 印刷 と選択し、プリンターとして Leica PDF Printer を選択します。

BOND Legacy Report Viewer では、ケースやスライドを作成しないでください。レガシーデータを表示したりレポートを作成するためにのみ使用します。

3.8 ヘルプ

臨床 および管理者 クライアントの両方のファンクションバーにある**ヘルプ**アイコン を選択 すると、ポップ アップウィンドウが開き、表示 するユーザーマニュアルのバージョンを選択 できます。

または、デスクトップアイコンのユーザーマニュアルの選択から開くこともできます。

3.9 BOND について

画面の左上にあるLeica Biosystems のロゴをクリックして、「BONDについて」ダイアロを表示します。ここには、システム情報の一覧が表示してあります。

図 3-10:「BOND について」ダイアログ

「BONDについて」ダイアログの情報の大部分は主にサービス担当者向けのものですが、施設スタッフにとっても最初の情報グループは、特にカスタマーサポートとの話し合いの際に有用と考えられます。

最初のグループに含まれる情報は、以下のとおりです。

- ソフトウェアのバージョン: ソフトウェアリリースのバージョン番号。
- BOND ユーザー:現在のユーザーのユーザー名。
- BOND ユーザーの役割:現在のユーザーのユーザーの役割。
- 言語:現在の言語。
- データベースバージョン: データベースのバージョン(データベースの構造を参照)。
- データバージョン: データベースにロードされたデータのバージョン。
- 地域情報:システムが構成された地球上の地域(インストール中に設定)。

ダイアログの情報はテキストファイルに保存することができます。レポートをクリックし、保存場所を選択するとファイルが保存されます。

サービスログ

管理者 クライアントでは、「BONDについて」ダイアログからサービスログレポートを作成 することができます.通常、これは、サービス担当者の要求に従って実行されます.サービスログを作成するには、

- 1 BOND についてダイアログのサービスログをクリックします(図 3-10を参照)。
- 2次のいずれかを選択します。
 - 特定の処理 モデュールのシリアル番号、
 - BOND システムのソフトウェアまたはコントローラーイベントについてレポートする*System*、または
 - LIS システムに関連 するイベントの *LIS*。
- 3 レポートの期間を選択するか、直前の7日をクリックします。
- 4 レポートを作成するには、**作成**をクリックします。レポートはレポートビューワに表示されます。3.7 レポートを参照のこと。
- 5 サービスログを CSV ファイルにエクスポートするには、データのエクスポートをクリックします。

3.10 BOND データ定義

BOND コントローラーに格納されているデータ定義には、システム全体の試薬とプロトコルの詳細が全て含まれています。デフォルトプロトコール、および Leica Biosystems の試薬と試薬システムの詳細も含まれています。

3.10.1 データ定義の更新

Leica Biosystems は、たとえば、新たにリリースされた試薬を追加するなど、ウェブサイトのデータ定義の更新を定期的に配布しています。データ定義の更新方法については、10.4 BDDを参照してください。

データ定義を更新するときには、ファイル拡張子が.**bdd**である、地域に合った更新ファイルを必ず使用してください。

BOND についてダイアログで、現在のデータバージョンを確認します。このダイアログボックスを表示するには、Leica Biosystems ソフトウェア画面の右上にあるBOND のロゴをクリックします。3.9 BOND についても参照してください。

3.11 ソフトウェアの更新

Leica Biosystems では、BOND システムの開発に伴い、ソフトウェアの更新を行う可能性があります。更新対象はメインソフトウェア、またはデフォルトのプロトコールや試薬、試薬システムを含むデータベースです。

現在のソフトウェアのバージョン番号は、「BOND について」ダイアログに表示されています(3.9 BOND についてを参照)。データベースのバージョンも「BOND について」ダイアログに表示されます。

クイックスタート

本章では、初めてBOND システムをお使いになる方のための基本的な使用方法を記載しています。この章ではサンプルケースを作成し、スライド4枚を設定および処理し、BOND の希釈済一次抗体*CD5、*CD3、*CD10、および*Bcl-6で染色を行う例を説明いたします。

BOND-III および BOND-MAX の場合、これらの抗体のデフォルトのプロトコールと検出システムは、*IHC Protocol FとBOND Polymer Refine Detection System(DS9800)です。

BOND-PRIME 処理 モジュールでは、デフォルトのプロトコールと検出 システムは、*IHC Protocol F とBOND-PRIME Polymer DAB Detection System(DS9824) です。このプロセスでは、アクセサリーの BOND-PRIME Hematoxylin (AR0096) も使用します。

この章に記載されている手順は、ISHプローブとプロトコールにも有効です(抗体をプローブと入れ替え、IHCプロトコールをISHプロトコールに入れ替えるだけです)。

4.1 BOND-III とBOND-MAX

作業を開始する前に、本書の2 ハードウェア章 と3 ソフトウェアの概要(BOND コントローラ上)章の関連する節をよくお読みください。

- 4.1.1 初期点検と起動
- 4.1.2プロトコールと試薬の点検
- 4.1.3 スライドの設定
- 4.1.4 試薬のロード
- 4.1.5プロトコールの実行
- 4.1.6終了

初期点検と起動 4.1.1

システムを起動する前に以下のステップを実行してください。

1 処理モデュールが清浄で、全てのメンテナンス機能が実行され装置が最新の状態になっていることを 確認します(12.1 クリーニングとメンテナンススケジュールを参照)。

毎日の処理前タスクは次のとおりです。

- a バルク廃液容器中の廃液が、半分以下であることを確認。現行モデルBOND-MAXでは、コンテナ のラベル上に、半分のレベルを示す白い水平の線が引いてあります(図 12-3を参照)。
- b バルク試薬コンテナには適切な試薬が十分に入っていることを確認します。
- 2 洗浄ブロックとミキシングステーションの確認 必要に応じてクリーニングまたは交換します。
- 3 スライドラベラーに適切なラベルが配置されていることを確認します。
- 4 処理モデュールとコントローラー(BOND-ADVANCEの場合はターミナルも)がオンになっていない場合は、 オンにします。
- 5 コントローラーまたはターミナルが作動している場合、クライアントを起動。
- 6 ソフトウェアを起動したら、ステータス画面で処理モデュールに通知が表示されていないことを確認しま す。表示があったら。スライドを実行する前に修正してください。
- 7 スライドラベラーの電源を入れます。

プロトコールと試薬の点検 4 1 2

処理で使用するプロトコールと試薬がソフトウェアで設定されていることを確認します。

プロトコールを点検するには

1 ファンクションバーでプロトコールセットアップアイコン(右図)を選択します。

2 表に「*IHC Protocol F」が表示されていることを確認します。

プロトコールが表示されていない場合は、画面下の推奨ステータスフィルターから「全 て」を選択します(7.2プロトコール設定画面を参照)。

表 からプロトコールを選択 し、**開く**をクリックします。**プロトコールのプロパティの編集**ダイアログに適 合 検 出 システム BOND Polymer Refine Detectionが表示 されていることを確認します。

ダイアログの上部付近で、プロトコールが優先と選択されていることを確認します(優先と選択されてい ない場合、プロトコールを優先と設定するには、監督者ユーザーの権限でログオンする必要がありま す)。

試薬を点検するには

この点検手順は、必要な抗体と検出システムがストックされており、BOND試薬の在庫として登録 試験の設定 済みであると仮定して説明します。詳細については、8.3.3 試薬と試薬システムの登録を参照して ください。

- 1 ファンクションバーの試薬のセットアップアイコン(右図)を選択します。
- 2 設定 タブで試薬 タイプとして一次抗体 を選択 し、画面下 のフィルターでサプライヤーとしてLeica Microsystems を、推奨 ステータスとして全 を選択 します。
- 3 必要な抗体(*CD5、*CD3、*CD10、および*Bcl-6) を見つけてダブルクリックすると、**試薬プロパティの編集**ダイアログが表示されます。
 - **a 工場出荷時のデフォルトプロトコールの復元**をクリックします(工場出荷時のデフォルト設定を復元するには、監督者ユーザーの役割としてログオンする必要があります)。これは、デフォルト染色プロトコール、*IHC Protocol F、デフォルト前処理プロトコールを設定します。
 - b 試薬が**優先**と選択されていることを確認します(優先と選択されていない場合、試薬を優先と設定するには、監督者ユーザーの役割でログオンする必要があります)。
 - c 保存をクリックします。
- 4 在庫タブからパッケージタイプとして試薬容器を選択し、画面下のフィルターで試薬の種類として一次 抗体を選択し、在庫状況として在庫ありを選択して、サプライヤーとしてLeica Microsystemsを、推奨ステータスとして優先を選択します。

必要な抗体が全て、使用可能な容量とともに表示されていることを確認してください。

また各抗体について十分な容量が確保されていることを確認してください。

5 同じタブから パッケージタイ として BOND 検出 システムを選択し、さらに在庫状況 として在庫ありを選択します。表中に適合検出システムBOND Polymer Refine Detection が表示され、十分な容量が確保されていることを確認してください(8.3.1.1 検出システムの容量 レポートを参照)。

4.1.3 スライドの設定

本節では、the BONDシステムでスライド染色と実際に処理モデュールにスライドを配置するために必要な詳細なプロセスについて説明します。

本節におけるソフトウェア操作は、スライド設定画面から行います。この画面を表示するには、ファンクションバーのスライド設定アイコンをクリックします。

サブセクション

- 4.1.3.1 ケースの詳細の入力
- 4.1.3.2 スライドの詳細の入力
- 4.1.3.3 コントロール
- 4.1.3.4 スライドのラベル表示
- 4.1.3.5 スライドのロード

4.1.3.1 ケースの詳細の入力

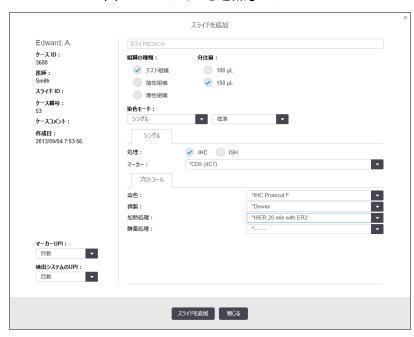
まず、スライドの作成ソフトウェアで、サンプルの患者に対する「ケース」を作成します。ここでは、患者名をA Edward、ケースID を 3688、および担当の医師名を Dr. Smith とします。

1 スライド設定画面でケースを追加をクリックします。ケースを追加ダイアログが表示されます。

図 4-1:「ケースを追加」ダイアログ

	ケースを追加	×
ケース ID :	3688	
患者名:	Edward,A	
ケースコメント:		
医師:	Smith	
	医師の管理	
ケース番号:		
分注量:	100 μL	
	√ 150 μL	
調製プロトコール:	*Dewax	
	OK キャンセル	

- 2 ケースIDフィールドをクリックして、「3688」と入力します。
- 3 患者名フィールドをクリックして、「Edward, A.」と入力します。
- 4 医師の管理 をクリックすると、医師の管理 ダイアログが開きます。ここで追加をクリックすると、医師の追加ダイアログが開くので、名前フィールドに「Smith」と入力します。優先ボックスにチェックが入っていることを確認します。保存をクリックします。
- 5 **医師の管理** ダイアログで、「Smith」を選択し、**OK**をクリックします。
- 6 ケースのデフォルトとして150 μ Lの分注量を選択します。この設定は、必要に応じてスライドの設定中に上書きすることができます。
- 7 **調製プロトコール**フィールドから「*脱パラフィン」または「*ベーキング&脱パラフィン」を選択して、ケースのスライドのデフォルトの調製を選択します。この設定は、必要に応じてスライドの設定中に上書きすることができます。
- 8 **OK**をクリックして「**ケースを追加」**ダイアログを閉じます。「**スライド設定**」画面左の表に新しいケースが表示されます。


ケースに関する操作の詳細については、6.3 ケースの作業を参照してください。

4.1.3.2 スライドの詳細の入力

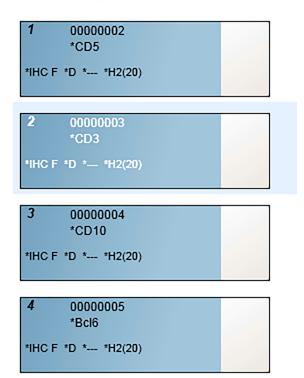
次の段階では、物理的なスライド4枚のそれぞれについて、ソフトウェアに「スライド」を作成する手順を説明します。

- 1 画面左のケースリストから、新しいケースID 3688を選択します。
- 2 **スライドを追加** をクリックして「**スライドを追加**」ダイアログを表示します。

図 4-2:「スライドを追加」ダイアログ

- 3 必要に応じて、このスライドに固有のコメントを追加します。
- 4 組織の種類として「テスト組織」が選択されていることを確認してください。
- 5 処理 モデュール と組織 サイズに適した分注量 を選択します (6.5.8 分注量 とスライド上の組織の位置を参照)。
- 6 ここでは、スライドが BOND-III で処理 されると仮定しているので、150 µL の分注量を選択します。
- 7 **染色 モードでシングル と通常** を選択 します。
- 8 IHCをクリックしてIHC処理を指定します。
- 9 マーカーリストから*CD5 (4C7)を選択します。
- 10 プロトコールタブでは、調製プロトコールはケースで設定されたものが、染色プロトコールおよび前処理プロトコールは*CD5デフォルトで設定されたものが自動的に入ります。

- 11 単一染色の場合、通常、ダイアログの左側にある一意の製品識別子(UPI)のデフォルトを「**自動」**のままにしておく必要があります。ただし、特定のスライドの特定のロット番号を選択する場合(ロット間の検証の場合など)は、次のフィールドのドロップダウンリストから選択します。
 - マーカーUPI マーカーの試薬 コンテナの UPI
 - **検出システム UPI** 検出 システムの UPI。


BOND-MAX および BOND-III でスライドを同時に処理するには、UPI を同じにするか、**自動**を選択する必要があります。

12 スライドを追加をクリックします。

「スライド設定」画面右のスライドリストにスライドが追加されます。このとき「スライドを追加」ダイアログは開いたままです。

- 13 ステップ%から12までを3回繰り返して、ステップ%で、*CD3 (LN10)、*CD10 (56C6)、および*Bcl-6 (LN22)をマーカーとして選択します。
- 14 全 てのスライドが追加 されたら、**閉じる**をクリックして**スライドを追加** ダイアログを閉じます。 スライドリストの詳細 を確認 します。

図 4-3: スライド設定画面で設定された4枚のスライド

スライドの詳細を変更する必要がある場合には、スライドをダブルクリックしてスライドのプロパティダイアログを開き、必要に応じて詳細を変更し、OKをクリックします。

スライドに関する操作の詳細については、6.5スライドでの作業を参照してください。

よく使う抗体を、パネル機能を使用して、一度に作成することもできます。パネルに関する説明や作成方法や使用方法については、8.4試薬パネル画面を参照してください。

4.1.3.3 コントロール

BOND システムには常にコントロールの使用をお勧めいたします。必ず患者組織と同じスライドにコントロール組織を塗布するよう強く推奨します。これとは別に、コントロールスライド用に、別のケースを作成することもできます。詳細については、6.2 コントロールの作業を参照してください。

4.1.3.4 スライドのラベル表示

これで、スライドのラベルを印刷してスライドに貼付する用意が整いました。

- 1 スライド設定画面でラベルの印刷をクリックします。
- 2 **印刷するスライドラベル**で、適切なオプションを選択し、**印刷**をクリックします。 ラベルが印刷されます。
- 3 スライドのすりガラス部(ラベルの貼付部分)が乾燥していることを確認してから、ラベルを貼付します。 このときスライドID またはバーコードがスライドの端に平行に配置されることを確認します。ラベルが正しい方向に張られていることをご確認ください。

図 4-4:正し、貼付されたラベル

詳細については、6.6 スライドのラベル付けを参照してください。

4.1.3.5 スライドのロード

スライドをロードするには

- 1 検体が表になるように、ラベルの端でスライドを持ちます。
- 2 スライドを、スライドトレイの空いた位置に向けます。このときスライドのラベル端をトレイ横のギザ部に合わせます(図 4-5 を参照)。スライドは上から下にはめ込み、トレイの凹部にしっかり収まるようにします。

図 4-5: スライドトレイ上 にスライドを配置する

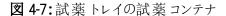
3 Covertile のヘッドを持ち、スライドトレイ内の凹部に Covertile のネックにあるキーを当てはめながら(図 4-6 の丸で囲んだ部分)、スライドの上に載せます。新デザインの Covertile には"Leica" の刻印がありますが、それが正しく読めるように配置すると、正しい面が上になるように配置されたことになります。

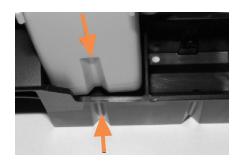
図 4-6: スライド上 にCovertile を配置 する

4 全てのスライドとCovertile をトレイにロードしたら、トレイを持ち上げて、端から、空のスライド染色ユニットに差し込みます。モデュールの中で止まるまでゆっくりスライドして入れます。このときトレイは力を入れずにスライドでき、所定の位置にくるとカチッと音が聞こえます。

4.1.4 試薬のロード

ここで、検出システム(BOND Polymer Refine) とマーカー容器 (*CD5、*CD3、*CD10、および*Bcl-6用) を処理 モデュールにロードする必要 があります。

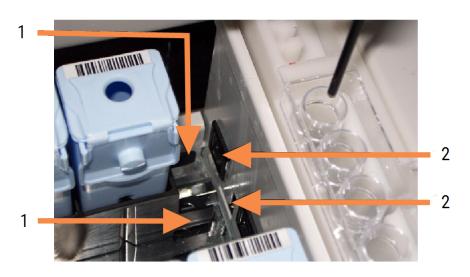



警告: キャップの周りに試薬が付いたままにしておくと、試薬容器が移動中に傾くことがあります。 試薬容器を開く際には、必ず認定された保護用眼鏡、手袋および防護服を着用してください。

試薬をBOND-III または BOND-MAX 処理 モジュールにロードするには、以下を実行します。

1 コンテナの背面の溝をトレイコンパートメント内の刻み目に合わせて、マーカーコンテナを試薬トレイに入れます。カチッと音がするまで容器を押し込みます。

必要に応じて、マーカー容器を検出キットのトレイの予備コンパートメントにセットすることができます。

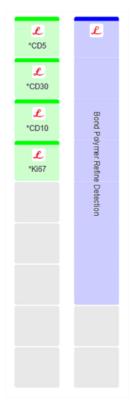

矢印は試薬 コンテナと 試薬 トレイの溝を示し ます。

- 2 試薬容器と検出キットの容器のフタを全て開けます。容器のフタを開け、後ろにあるクリップにカチッという音がするまで押し込みます。
- 3 上部のバーコードラベルがコンテナに密着していることを確認します。 浮き上がっているラベルは押し付けます。
- 4 上部のバーコードラベルから湿気/水滴を拭き取ります。

5 試薬トレイを、処理モデュールの試薬プラットフォームにロードします。プラットフォームのガイドを用いて、正し、配置します。

トレイがプラットフォームの端に達すると、インターロックがかかります。このときトレイのLED が緑色に点灯して、トレイが所定の位置に配置されたことが表示されます。

図 4-8: 試薬トレイの挿入


凡例

- 1 トレイのロック機構
- 2 が処理モデュールのロックポート

6 ソフトウェアの「処理モデュール」タブをクリックして、システムステータス画面を表示します。

試薬のカラムが淡色で示され、ボーダーが暗色に変わります(トレイの画像の準備中)。メインロボットが使用可能になるとBONDシステムにすぐに試薬にIDが表示され、試薬のアイコンが更新されます。

試薬に問題があるときは、画面に注意 アイコンが表示 されます。 詳細 を表示 するには、このアイコンを右 クリックします(5.1.3.4 試薬の問題の解決 を参照)。

試薬トレイのLEDが緑色に点灯している間は、トレイはいつでも取り外すことができます。トレイの試薬が2分以内に必要となるときはLEDが赤色に変わり、トレイがロックされます(2.2.6.5試薬プラットフォームを参照)。

4.1.5 プロトコールの実行

スライドと試薬が設置され、処理モデュールにロードされると、処理を開始することができます。

- 1 処理モデュールのフタが閉じていることを確認してください。
- 2 正面 パネル(ロードされたトレイの下)のロード/アンロードボタンを押します。
 BOND-III または BOND-MAX でトレイがロックされ、スライドトレイのLEDがオレンジ色 に点灯 します。

スライドトレイからロック音がします。その他のひび割れ音や大きな音が聞した場合は、Covertileが正し〈配置されていない可能性があります。この場合はトレイをアンロックして取り外し、スライドとCovertileを点検して〈ださい。

- 3 メインロボットが使用可能になるとBONDシステムにすぐにスライドが表示されます。
 必要な試薬がない場合は、スライドリストの下に注意アイコンが表示されます。詳細を表示するには、このアイコンを右クリックします。
- 4 認識できないスライドや互換性のないスライドが検出されなければ、染色を実行することができます. 認識できないスライドや互換性のないスライドが検出されなければ、染色を処理することができます。 プログレスバーが「開始」フェーズに設定され(5.1.6.2 処理の進行を参照)、処理のステータスがスライド の準備完了に設定されます(5.1.6.1 処理ステータスを参照)。

プロトコールを開始するには、 をクリックします(または、後で開始するよう処理モジュールを設定することもできます。5.1.8 遅延スタートを参照してください)。

処理のスケジュールが行われた後、プログレスバーが「進行中」フェーズに変わり、また処理のステータスが処理中(OK)に変わります。

一度に1つの処理のみを開始します。次の処理を開始する前に、現在の処理を開始している/スケジュールしている必要があります。1回の各処理が開始した後しばらく待って、処理が正常に開始されたかを確認します。そうでない場合、処理状態が拒否/スライド準備に設定されています。5.1.6.1 処理ステータスを参照。

処理中は、スライド染色ユニットのロード/アンロードボタン押してもスライドトレイは解除されません。

システムステータス画面上のトレイの下にある をクリックして、処理を中止します(5.1.7 処理の開始または中止を参照)。

4.1.6 終了

処理が終了すると、「処理モデュールタブ」アイコンが点滅します(5.1.1 処理モデュールタブを参照)。実行中に不測のイベントが発生した場合は、表示テキストが赤色に変わり、トレイの下と問題のあったスライド上に通知記号が表示されます。詳細を表示するには、システムステータス画面に表示された注意アイコンを右クリックします。また「イベントレポート」(9.4 処理イベントレポートを参照)を参照して、処理中に生じた問題に関するその他の情報を入手する必要があります。

処理が終了したら

1 試薬 トレイを取り外します。

試薬容器のフタをしっかりと閉めて試薬の蒸発を防ぎます。ラベルまたはデータシートの推奨事項に従い、試薬はすくに保管してください。

- 2 イベントレポートを作成します(9.4処理イベントレポートを参照)。
- 3 ロード/アンロードボタンを押して、スライドトレイを処理モデュールから取り外します。

トレイをアンロードしたときにひび割れ音や大きな音が聞こえた場合は、不測のイベントによりスライドの位置がずれるなどしてスライドが割れていないかどうかを確認し、割れている場合にはカスタマーサービスに連絡してください。

4 フラットで安定した場所に、スライドトレイを置きます。Covertileを外すには、スライドのラベルを押さえて、次にCovertileのネックを注意して押すと、Covertileの端が上がり、スライドから離れます。

Covertileはスライドの表面上でスライドさせないでください。組織を損傷し、正しい判定ができません。

- 5 Covertileはスライドから外し、クリーニングしてください(12.3 Covertileを参照)。
- 6 取り外したスライドは、各施設のプロセスに従って、それ以降の処理を行ってください。

スライドは再処理できます(9.3 スライドのプロパティとスライドの再処理を参照)。

これで BOND システムの最初の処理が終わりました。

4.2 BOND-PRIME

詳細については、別書のBOND-PRIME ユーザーマニュアルを参照してください。

4.2.1 初期点検と起動

- 1 コントローラー(およびBOND-ADVANCEのターミナル)をオンにし、BOND臨床クライアントを開きます。
- 2 スライドラベラーにラベルと印刷リボンがあり、オンになっているかを確認
- 3 BOND-PRIME 処理 モジュールを初期化してログインします。
- 4 アクションが「まもなく」または「今すぐ」必要であることを示すアクションキューのタスクを完了します。

4.2.2 プロトコールと試薬の点検

*IHC Protocol F および BOND-PRIME Polymer DAB Detection System(DS9824)を使用します。このプロセスでは、アクセサリーのBOND-PRIME Hematoxylin(AR0096)も使用します。もしな、4.1.2 プロトコールと試薬の点検に記載されているステップに従ってください。

4.2.3 スライドの設定

4.1.3 スライドの設定 に記載されているステップに従ってください(スライドのラベル付けまで)。

4.2.4 BOND-PRIME 処理 モジュールで次の操作を行います。

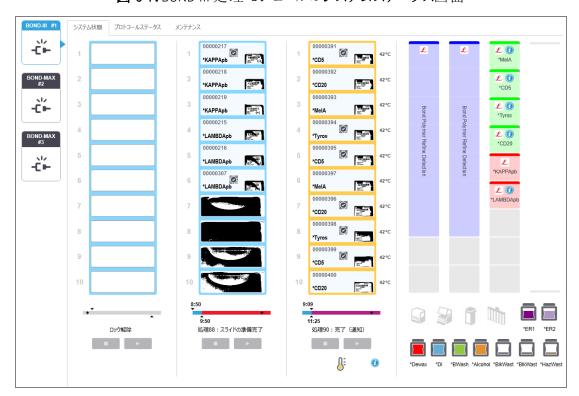
- 1 試薬トレイと検出システムトレイをロードします。
- 2 スライドをプリロードドロワーにロードします。
- 3 スライドがスキャンされ、ドロワーから移され、自動的に処理されます。
- 4 染色プロセスが完了すると、スライドはアンロードドロワーに移され、取り外されるまでドロワーで保湿されます。

5

BOND-III および BOND-MAX のステータス画 面 (BOND コントローラー上)

BOND コントローラーのステータス画面は、BOND-PRIME には使用されません。BOND-PRIME のステータスについては、別書のBOND-PRIME ユーザーマニュアルを参照してください。

臨床 クライアントの各処理 モデュールには 2種類のステータス画面があり、左側 タブからモデュールを選択したときにウィンドウの左上 タブで選択できます。システムステータス画面では、モデュール内のスライドと試薬の配置を示すビューでシステムをコントロールすることができます。またプロトコールステータス画面では、各スライドのプロトコールの進捗状況を知ることが可能です。メンテナンス画面には、種々のメンテナンス操作コマンドがあります。


- 5.1 システム状態画面
- 5.2 プロトコールの状態画面
- 5.3 メンテナンス画面

5.1 システム状態画面

この画面は、BOND-III および BOND-MAX 処理 モジュールにのみ適用 されます。BOND-PRIME 処理 モジュールのステータス情報 については、別書の BOND-PRIME ユーザーマニュアルを参照して 伏さい。

この画面から操作をコントロールすることができます。また、ロードしたスライドトレイと試薬の詳細、ならびにシステム内の試薬、廃液、インターロックのステータスを表示します。

図 5-1: BOND-III 処理 モジュールのシステムステータス画 面

ステータス画面の左側の処理モデュールタブで、関連処理モデュールのステータスの要約が図示できます。このタブをクリックすると、処理モデュールのステータスの詳細が表示されます。

詳細については以下を参照してください。

- 5.1.1 処理 モデュールタブ
- 5.1.2 ハードウェアステータス
- 5.1.3 試薬のステータス
- 5.1.4 スライド情報
- 5.1.5 オンボードスライドの識別
- 5.1.6 処理進行インジケーター
- 5.1.7 処理の開始または中止
- 5.1.8 遅延スタート

5.1.1 処理モデュールタブ

このソフトウェアの画面の左側にあるタブに、システム(シングルシートの場合)内またはクライアントが接続されているポッド(BOND-ADVANCEの場合)内の処理モデュールが表示されます。全部の処理モデュールを表示するだけの十分な垂直スペースがない場合、矢印ボタンが表示されるのでそれで上下方向にスクロールします(右に示した上向き矢印)。

図 5-2:処理 モデュールタブ(BOND-III)

各 タブには処理 モデュール名が表示され、長方形 アイコンにはモデュールのスライド染色部品の状態が表示されます (下記参照)。処理 モデュールのシステム状態画面を表示するには、タブをクリックします。それが選択されると、処理 モデュールタブの周囲に、青のアウトラインと右向きの矢印が表示されます(上記参照)。

5.1.1.1 スライド染色 ユニットの状態

処理モデュールのタブに表示されるスライドユニットの状態の例を以下に示します。

処理前:

空白の長方形: トレイがないまたはロックされていない

動画のID番号とソリッドバー:トレイの画像取得中です。

スライドが入っているトレイのアイコン: スライドラベルの画像が取得されており、トレイを処理 する準備が整っています。

処理の実行中:

1:06 PM 時間が黒で表示され、左の点が移動: トレイの処理が実行されており、不測のイベントの発生は報告されていません。表示されている時間は、トレイの予想終了時間です。

1:06 PM 時間が赤で表示され、左の点が移動: トレイの処理が実行されていますが、不測のイベントの発生が報告されています。表示されている時間は、トレイの予想終了時間です。

処理の実行後:

1:05 PM 黒い時間表示が点滅し、左の点が静止:表示されている時間で処理が終了し、不測のイベントは発生しませんでした。

2:28 PM 赤い時間表示が点滅し、左の点が静止:表示されている時間で処理が終了し、不測の事態が発生しました。

処理が中断されました。

5.1.1.2 処理モデュールの状態

ソフトウェアが、継続的にシステムの状態を監視し、処理モデュールタブに次のアイコンが表示される場合があります:

0	意味	アイコン	意味
-C'E-	処理モジュールが接続されていません。	•	警告: BOND ソフトウェアで不測の事態が検出されました。
	(点滅)処理モデュールの初期化中。	A	アラーム(点滅): 処理モデュールの処理を継続するには、ユーザーの介入が必要です。
	現在、処理モジュールの点検中です。	8	処理モジュールのメンテナンス作業中です。

5.1.2 ハードウェアステータス

BONDシステムの一部に問題がある場合、画面右下のアイコンは警告 またはアラーム を表示します。システムに関する一般的な通知がある場合、このアイコンは情報インジケータ を表示します。アイコンを右クリックすると、詳細が表示されます。

システムの一般的な障害。あるいは、メンテナンス作業のリマインダー。

染色処理中、フタが開いた場合や、バルクコンテナのドアが開いた場合(BOND-MAX のみ)に表示されます。これらは、処理モデュールの作動中は閉じていなければなりません。

また、染色処理が実行されていない場合には、情報インジケータが ①代わりに表示されます。

試薬がない、または、量が不十分。

処理 モデュールが初期化を開始しましたが、また、ミキシングステーションがスキャンされていません。

初期化中にミキシングステーションが検出されませんでした。ステーションが設置されていないか、または設置されていてもバーコードが認識できなかった可能性があります。

必要に応じて、処理モジュールに清浄なミキシングステーションをロードしてください。アイコンを右クリックし、プロンプトが表示されたら、ミキシングステーションが正しい位置に配置されたことを通知してください。

初期化中に、ミキシングステーションの汚れが検出されました(前回、処理モデュールを終了したときに既に汚れていたことを示します)。

清浄なミキシングステーションが配置されていることを確認してから、アイコンを右クリックして確定してください。

ミキシングステーションのクリーニングに失敗しました。

別の清浄なステーションを用いて処理を続行することができます。もしくは処理モデュールを再起動して、通知をクリアしてください。

それでも通知が表示され続ける場合は、流路系の問題が考えられます。カスタマーサービスに ご連絡ください。

清浄なミキシングステーションがありません。

処理モデュールでステーションのクリーニングが終了するまで待ち、通常どおりに実行してください。

ステーションがクリーニングされない場合は、処理モデュールを再起動する必要があります。それでも通知が表示され続ける場合は、流路系の問題が考えられます。カスタマーサービスにご連絡〈ださい。

必要に応じて、手動でミキシングステーションのクリーニングすることが可能です。12.7 洗浄ブロックとミキシングステーションを参照。

5.1.2.1 ヒーターのエラー

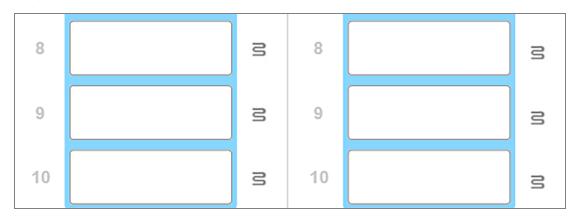

BOND-III および BOND-MAX の各 スライドヒーターは個 々 にモニタリングされ、温度 エラーが生じたときは エラー表示が出ます(図 5-3 を参照)。ヒーターがエラーを表示した場合は、サービス担当部門へ連絡してください。

図 5-3:個別のヒーターのエラー

エラー表示された位置で、加熱を必要とするスライド処理を実行しないでください。実行中にヒーターが誤動作すると、その位置のスライドは正しく処理されない可能性があります。ヒーターの誤作動によって安全性が脅かされるおそれがある場合は、処理モデュールの全てのスライドのヒーターが切断されます(図 5-4 を参照)。

図 5-4: ヒーターの動作が停止すると、各位置のヒーターのシンボルが灰色になります。

スライドヒーターが切断されたら、処理モデュールをオフにしてから再起動し、ヒーターのロックを解除してください。ただし異常のあるヒーター位置は、引き続き加熱を必要としないスライド処理に使用可能です。

5.1.2.2 温度表示

スライド染色 ユニットが室温を超えると、システムステータス画面の下部に温度インジケーターが表示されます。

画面下部の温度インジケーターは、スライド染色ユニットが暖かいか熱いかを示します。

図 5-5: 温度 インジケーター - 暖 かい(左) および熱い(右)

システムステータス画面上では、スライドトレイの境界線の色も変化して温度を示します。トレイが室温の場合には青、温かい場合はオレンジ、熱い場合は赤になります。

図 5-6: スライドトレイの温度表示の境界線: 温かい(左) および熱い(右)

スライド染色部品とその周辺装置に触らないでください.非常に高温になることがあり、ひどい火傷を負うおそれがあります。動作停止後20分間放置して、スライド染色ユニットとその周辺装置の温度が下がるまでお待ちください。

5.1.3 試薬のステータス

システム状態画面の右には、検出された試薬のステータスが表示されます。以下のセクションでは、使用されるアイコンと、画面で表示される試薬の問題の解決方法について説明します。

- 5.1.3.1 試薬システム
- 5.1.3.2 試薬容器
- 5.1.3.3 試薬レベル
- 5.1.3.4 試薬の問題の解決
- 5.1.3.5未検出試薬の解決
- 5.1.3.6 バルク容器のステータス

5.1.3.1 試薬システム

BOND 検出 システム

BOND クリーニングシステム

5.1.3.2 試薬容器

試薬容器アイコンには、BONDが提供する試薬名の前にアスタリスクが表示されます。

BOND希釈済一次抗体。

これらの試薬の詳細は、登録時にBOND ソフトウェアに自動入力されます。試薬の略名が表示されます。

BOND インスタン HSHプローブ。

これらの試薬の詳細は、登録時にBOND ソフトウェアに自動入力されます。試薬の略名が表示されます。

BOND オープンコンテナまたはタイトレーションコンテナにユーザーが用意した一次抗体。

この試薬の詳細は、登録前に**試薬の設定**画面に手動入力する必要があります。登録時には、ロット番号と有効期限を入力してください。試薬の略名が表示されます。

BOND オープンコンテナまたはタイトレーションコンテナにユーザーが用意したISH プローブ。

この試薬の詳細は、登録前に**試薬の設定**画面に手動入力する必要があります。登録時には、ロット番号と有効期限を入力してください。試薬の略名が表示されます。

BOND希釈済アクセサリー試薬。

これらの試薬の詳細は、登録時にBOND ソフトウェアに自動入力されます。試薬の略名が表示されます。

BOND オープンコンテナまたは タBOND イトレーションコンテナの酵素。

BOND酵素はユーザーが用意し、オープンコンテナに入れてください。ただし、試薬の設定の詳細は、BONDソフトウェアに定義済みです。登録時には、ロット番号と有効期限のみを入力してください。

BOND オープンコンテナまたはタイトレーションコンテナにユーザーが用意したアクセサリー試薬。 この試薬の詳細は、登録前に試薬の設定画面に手動入力する必要があります。登録時には、ロット番号と有効期限を入力してください。試薬の略名が表示されます。

ソフトウェアは、この位置に試薬を検出できませんでした。

試薬が存在するときは、5.1.3.5 未検出試薬の解決を参照して問題を解決してください。イメージャーが頻繁に正し \P D を認識できないときは、 \P D イメージャーのウィンドウをクリーニングしてください(12.9 \P D イメージャーを参照)。

BOND ソフトウェアによって、この試薬に問題が検出されました。詳細を表示するには、情報記号を右クリックしてください。

BOND ソフトウェアが試薬を認識できなかった可能性があります。この場合はハンディスキャナーを用いて試薬をスキャンし、「在庫」に追加してください。また、ID に損傷がある時は、ID を手動で入力してください。詳細については、8.3.3 試薬と試薬システムの登録を参照してください。

BOND ソフトウェアによってこの試薬または試薬システムに問題が検出されました。 詳細を表示するには、通知記号を右クリックしてください。

5.1.3.3 試薬レベル

システムステータス画面の試薬システムアイコンは、容量を3段階レベルでしか示すことができません。

希釈済抗体とオープンコンテナのアイコンは、より正確に試薬レベルを表示します。

図 5-7:システムステータス画面に表示された希釈済抗体レベルの例

詳細な試薬在庫情報または試薬システム在庫情報を表示するには、アイコンを右クリックして、ポップアップメニューから在庫…を選択します。試薬の在庫詳細画面が表示されます。8.3.2 試薬または試薬システムの詳細を参照。

5.1.3.4 試薬の問題の解決

処理を開始する前に、BOND ソフトウェアが、処理に必要な試薬のトラブルを検出した場合、ソフトウェアは、システム状態画面上のスライドトレイの下にある試薬コンテナの図に注意アイコンを表示します。処理中に問題が発生した場合、この節で前述したように、試薬ハードウェアのステータスアイコンの上に注意アイコンが表示されます。注意アイコンを右クリックすると、問題の詳細が表示されます。

試薬を交換または追加する必要がある場合には、問題のある試薬の入った試薬トレイを取り外し、トレイに必要な試薬を交換または追加して入れ、トレイを再ロードします。

処理が既に実行されていて、2分以内に特定のトレイの試薬を必要とする場合には、処理を中断しない限り、そのトレイを取り外すことはできないことに注意してください。このとき、試薬トレイのインジケータが赤く点灯して表示されます。

5.1.3.5 未検出試薬の解決

試薬が検出されない場合、またはキットが部分的にしか検出されない場合は、以下の手順に従ってください。

- 1次の事項を確認してください。
 - 試薬 コンテナが、試薬 トレイに正し 〈配置 されていることを確認して 〈ださい。
 - 試薬コンテナのキャップが開いており、コンテナの後ろに固定されていることを確認してください。
 - コンテナの上部前面の試薬バーコードID に損傷がないことを確認してください。
- 2 試薬が「在庫」に登録されていることを確認してください。
 - 試薬が登録されていない場合は、8.3.3 試薬と試薬システムの登録で説明された方法で登録してください。
- 3 この時点で、次のいずれかを行うことができます:
 - a 試薬トレイを取り外し(このとき該当する試薬の固有パック識別子(UPI)をメモしておく、システムがそれを自動的に再識別するように試薬トレイを再挿入する、または
 - b 試薬トレイを再挿入しても解決しない場合、次の方法で、手動で試薬の識別を行います。システム状態画面上のそのコンテナのアイコンを右クリックしサブメニューから選択する…をクリックする。 上でメモした試薬のUPIを入力し、OKをクリックする。

手動で入力された、または部分的に自動識別された試薬が認識されると、記号 が画像上に表示されます。試薬 トレイを取 り外 すと、記号(および手動で識別された試薬 または自動識別された キット)が消えます。

試薬UPI番号を手動で入力すると、次のメッセージが表示されます。

図 5-8: 手動で入力された試薬の通知

手動で入力されたUPI番号がシステムによって識別されるか、処理モジュールによって試薬が自動識別された場合、次のアイコンが表示されます。

図 5-9: 手動で入力された試薬または自動識別された試薬

キットが部分的にしか識別されず、処理モジュールによって一部のコンテナが自動識別された場合、次のメッセージとアイコンが表示されます。

図 5-10:自動識別されたキットの通知

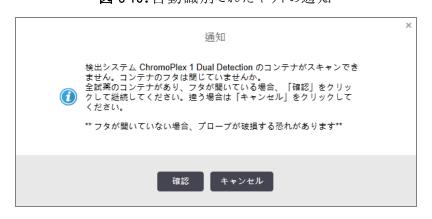


図 5-11:自動識別されたキット

5.1.3.6 バルク容器のステータス

システム状態画面の右下には、バルク廃液容器や試薬容器のアイコンが表示されます。各容器にはラベルが貼付され、色はインストールされた容器に一致しています。システム状態画面上のバルク容器アイコンの位置は、処理モデュール上の対応するバルク容器キャビティの実際の位置を反映しています。

各処理モデュールのタイプの容器設定については、2.2.7 バルク容器キャビティを参照してください。

図 5-12: バルク容器(BOND-III設定)

図 5-13: バルク容器(BOND-MAX設定)。

一番右のアイコンは、 外部廃液容器を示し ます。

下に、上記の各バルク容器の内容物の説明を示します。

バルクコンテナのラベル	バルクコンテナの内容物
*Dewax	BOND Dewax Solution
*DI	脱イオン水
*BWash	BOND 洗浄液
*Alcohol	アルコール
*BlkWast	バルク廃液
*HazWast	ハザード廃液
*ER1	BOND Epitope Retrieval Solution 1
*ER2	BOND Epitope Retrieval Solution 2

BOND-III

ソフトウェアは、BOND-III のバルク試薬および廃液 コンテナの溶液レベルを表示します。試薬の量が低下した場合、または排液レベルが上昇した場合、問題の深刻さに応じて、可聴アラーム、ボトルライト(白色または赤色)の点滅、および警告アイコンがステータス画面に表示される場合があります。アイコンを右クリックして注意メッセージを読み、問題を解決するために必要な措置を行います。12.2.2 バルク容器を充填する、または、空にするを参照。

警告記号が表示された場合は、問題が解決されるまで処理が休止します。

システムステータス画面上のバルク容器のステータスは、バルク容器照明システム(BOND-III) (51ページのセクション) に示すように、照明システムと同期します。

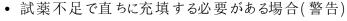
BOND-III ソフトウェアのディスプレイには、バルク試薬で処理できる追加のスライドの予測枚数に基づいて、ボトル内のレベルが表示されます。以下の画像を使用して、バルク容器の状態が示されます。

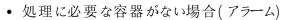
バルク試薬コンテナ量のアイコン

図 5-14: バルク試薬 コンテナ量のアイコン

レベル	ステータス	供給 ボトル	脱 パラフィ ン	アルコール	DI	バッファー	HEIR1	HEIR2	ラベル	ボトル
		GUI			 量のí	<u>'</u> 範囲			ラー	/ / ト
-	-	取 り外 された ボトル	-	-					自色 点滅	オフ
0	バッチ処理の一時停止		0 ~ 150	0 ~ 150	0 ~ 150	0 ~ 150	0∽100	0∽100	赤色 点 滅	赤色 点 滅
1	バッチを 開始で きません		150 ~ 500	150 ~ 500	150 ~ 1000	150 ~ 1000	100 ~ 300	100 ~ 300	白色点滅	白色点滅
2	OK		500 ~ 750	500 ~ 750	1000 ~ 1500	1000 ~ 1500	300 ~ 500	300 ~ 500	白色	白色
3	OK		750 ~ 2500	750 ~ 2500	1500 ~ 3500	1500 ~ 3500	500 ~ 1500	500 ~ 1500	白色	白色

レベル		供給 ボトル		アルコール	DI	バッファー	HEIR1	HEIR2	ラベ ル	ボトル
		GUI			量の質	范 囲			ラー	ሰ ነ
4	OK		2500 ~ 5000	2500 ~ 5000	3500 ~ 5000	3500 ~ 5000	1500 ~ 2000	1500 ~ 2000	白色	白色


以下のいずれかの場合に表示されます。


- 試薬が不足しおり、ただちに充填が必要な場合
- 容器がない場合
- 処理を開始するのに十分な量がない場合

12.2.2 バルク容器を充填する、または、空にするを参照。

次のいずれかが発生したため、処理が一時停止された場合に表示されます。

12.2.2 バルク容器を充填する、または、空にするを参照。

排液容器量のアイコン

図 5-15: バルク排液容器量のアイコン

レベル	ステータス	廃液ボトル	標準廃液	ハザード廃液	ラベル	ボトル
,,		GUI	量の	··················· 範囲	<i>ラ-</i>	1 ト
-	-	取り外されたボトル	-	-	白色 点滅	オフ
0	OK		0 ~ 1100	0 ~ 1100	白色	オフ
1	OK		1100 ~ 3000	1100 ~ 3000	白色	白色 (1スリップの み)
2	OK		3000 ~ 3900	3000 ~ 3900	白色	白色

レベ	ステータス	廃液ボトル	標準廃液	ハザード廃液	ラベル	ボトル
		GUI	量の	範囲	ラ	1 ト
3	バッチを開始できませ ん		3900 ~ 4800	3900 ~ 4800	白色 点滅	自色 点滅
4	バッチ処理の一時停止	•	4800 ~ 5000	4800 ~ 5000	赤色 点滅	<mark>赤色</mark> 点滅

以下のいずれかの場合に表示されます。

• 廃液がほぼ満杯になっているので、直ちに廃棄する必要がある場合

12.2.2 バルク容器を充填する、または、空にするを参照。

次のいずれかが発生したため、処理が一時停止された場合に表示されます。

- 廃液が満杯で廃棄する必要がある場合(警告)
- 処理に必要な容器がない場合(アラーム)

12.2.2 バルク容器を充填する、または、空にするを参照。

BOND-MAX

問題が検出されると、バルク容器に「注意」アイコン(上記参照)が表示されます(試薬容器中の液量が少なすぎる、廃液容器中の液量が多すぎるなど)。通知アイコンを右クリックすると詳細が表示されます。

5.1.4 スライド情報

以下のセクションでは、システム状態画面でスライド情報を表示するために使用されるアイコンについて説明します。スライドポップアップメニューのオプションについても説明されます。

- 5.1.4.1 スライドアイコン
- 5.1.4.2 スライドトレイのポップアップメニュー
- 5.1.4.3 スライドのイベント通知
- 5.1.4.4 互換性のないスライド設定の解決

5.1.4.1 スライドアイコン

システム状態画面には、3つのスライドトレイそれぞれについて、グラフィックで表示されます(1個のスライドにつき1個のアイコンを表示)。スライドアイコンによって、各スライドのステータスが表示されます。

お使いのシステムでは 2D バーコードを使用しています。スライドアイコンは、スライドラベルの取得画像を含むように任意に設定することができます。既存の設定を変更する場合は、カスタマーサポートにお問い合わせください。

下表にスライドのアイコンの例を示します。

バーコードラベルのスライドアイコン

この位置にスライドがないか、スライド画像が取得されたがシステムで識別されませんでした

スライド画像が取得され、自動識別されました

(5.1.5.1 スライドの自動識別を参照)

スライド画像が取得され、手動で識別されました。スライド上の記号 (赤色の丸で囲まれたところ)に注意してください

(5.1.5.2 オンボードスライドの手動識別を参照)

このスライドは、トレイ内の1枚以上の他のスライドと互換性がありません(5.1.4.4 互換性のないスライド設定の解決を参照)

スライド処理中にイベント通知がありました

(5.1.4.3 スライドのイベント通知を参照)

BOND システムが認識したスライドをダブルクリックすると、そのスライドのスライドのプロパティダイアログが開きます。実行が開始されなかった場合は、このダイアログでスライドの詳細を編集できます。ただしその後に、スライド用の新しいラベルを印刷して、トレイをアンロードし、新しいラベルを貼付して、また再ロードする必要があります。

5.1.4.2 スライドトレイのポップアップメニュー

システムステータス画面のスライドトレイのグラフィックのスライドを右クリックすると、スライドやトレイの様々なオプションが表示されます。

コマンド	内容
手動で選択	スライドが自動識別されない場合に有効になります。
	選択すると「スライドの識別」ダイアログが開き、システムで設定されたスライドを識別することができます(5.1.5.2 オンボードスライドの手動識別を参照)。
	このオプションは、未識別スライドをダブルクリックしても選択できます。
注意 メッセージ	スライドにイベント通知が表示された場合、注意 メッセージを見ることができます (5.1.4.3 スライドのイベント通知を参照)。
処理イベント	処理に関するイベントレポートが作成されます(9.4 処理イベントレポートを参照)。
遅延スタート	処理の「遅延スタート」を設定します(5.1.8遅延スタートを参照)。

5.1.4.3 スライドのイベント通知

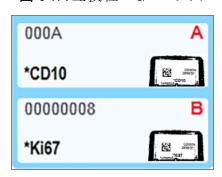
図 5-16:イベント通知のあるスライド

処理中に不測のイベントが発生すると、スライドアイコンに警報記号が表示されます。ただしこの通知は、必ずしも染色の失敗を示すものではありません。通知シンボルが表示されたら、システムオペレーターまたは施設の監督者は以下の措置を取り、スライドが検査に適しているかどうかを確認してください。

1 スライドを右 クリックして、**処理イベント**を選択すると、イベントレポートが作成されます(9.4 処理イベントレポートを参照)。

通知の原因となったイベントは全て、太字で表示されます。スライドに通知されたイベントの性質に関する重要情報が提供されているので、システムオペレーターまたは施設の監督者は、通知されたイベントについて慎重に検討してください。

- 2 染色された組織を精査します。
- 3 コントロールスライドを精査します。


施設で染色の質を判断的できない時は、通知に関して病理医師に報告するか、スライドを再処理してください。

1つのイベントレポート内に複数の通知がある場合もあります。処理が、終了(イベントが記録されました)のステータスで終了した場合、必ずレポート全体を精査してください。ステータスが、終了(OK)である場合、レポートを精査する必要はありません。

5.1.4.4 互換性のないスライド設定の解決

BOND システムが互換性のないスライドを検出すると、トレイの全スライドの右上に赤色の太字が表示されます。同じ文字のスライド同士は互換性があります。

図 5-17: 互換性のないスライド

スライドトレイを取り出して互換性のないスライドを取り外します。またはスライドのプロパティを変更して(プロパティにエラーがある場合)、スライドに互換性を持たせます。スライドのプロパティを変更したときは、変更したスライドのラベルを再印刷して、トレイに再ロードする前にスライドに貼付する必要があります。

スライドの互換性の詳細については、6.9 スライドの互換性を参照してください。

5.1.5 オンボードスライドの識別

一般的なワークフローでは、BOND または LIS のラベルが貼付されたスライドは、処理モデュールにロードされてから自動的に識別されます。識別はラベルの 2D バーコードを読み取って行われます。スライドラベルが不鮮明などの原因でラベルが読み取れない場合には、BOND ソフトウェアを使用して手動で識別できます。一部のワークフローでは、当然のこととして、手動識別が利用されます(6.8 スライドとケースの臨時作成を参照)。

5.1.5.1 スライドの自動識別

BOND システムでは、BOND ラベラーを使用して作成された標準 BOND 2D バーコードスライドラベル(6.6 スライドのラベル付けに説明する)、および認識できるバーコード形式を使用するLIS で作成されたスライド(11.3 LIS の接続と初期化を参照)を自動的に識別することができます。スライドトレイがロックされている時は、システムが各スライドラベルを識別し、印刷されたラベルの付いたスライドと照合します。そのラベルが印刷されたラベルと一致したら、スライドが自動識別され、それ以上のアクションは必要ありません。

本システムは、スライドの識別中に各ラベルの画像を取り込みます。この画像は、スライドマッチングの永続的な記録を残すために、次のレポートに表示されます。

- 9.4 処理イベントレポート
- 9.5 処理詳細レポート
- 9.6 ケースレポート

システムがラベルを識別できない場合は、手動のスライドの識別手順を用いて識別します(次のセクションを参照)。

5.1.5.2 オンボードスライドの手動識別

各 スライドラベルの画像を取得するようにセットアップされるシステム上で、自動識別が失敗した場合、まだ処理モデュールにロードされている状態でも、スライドは手動で認識できます。ロードされているスライドを手動で識別するには、以下の手順に従ってください。

1 システムがスライドを自動的に識別できない場合、「システムステータス」ダイアログにラベルの画像が表示されます。

図 5-18:自動識別されていないスライド

- 2 スライドの識別ダイアログを表示するには、以下のどちらかを実施してください。
 - a スライド画像をダブルクリックする。または
 - b 画像を右クリックして、ポップアップメニューから「手動選択」を選択する。

3 「スライドの識別」ダイアログが表示されます。

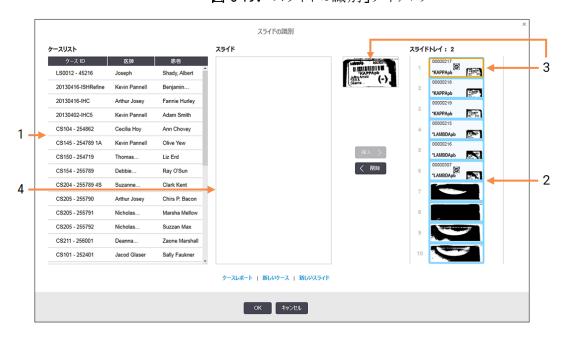


図 5-19: 「スライドの識別」ダイアログ

左ペイン(1)には、未処理のスライドの入ったケースが全て表示されます。デフォルト設定では、ラベルが印刷されているスライドの入ったケースのみが表示されます(ラベルが印刷されていないスライドの入ったケースを含めて表示させることもできます。6.8.2.2 外部 スライドラベルを参照してください)。

右ペイン(2)に、現在のスライド染色ユニットのスライドラベルが表示されます。

ダイアログを開いた時に選択されたスライドは右ペインに強調表示され(項目3)、その横に拡大表示されます。右ペインのスライドの上にカーソルを置くと、画像がさらに拡大されます。

中央の枠(4)には、左枠で選択したケースで設定されたスライドが表示されます。この時点では、スライドは、処理モデュールで認識されたスライドと照合されていません。デフォルトでは、ラベルが印刷されたスライドのみが表示されますが、このケースに設定された全スライドを表示することもできます(6.8.2.2 外部スライドラベルを参照)。

この時必要に応じて新しいケースと新しいスライドを用いて、新しいケースとスライドを作成可能です (手順については、6.8 スライドとケースの臨時作成を参照)。なお以下の指示は、必要なスライドが全てBONDにおいて設定済みであると仮定しています。

4 選択 されたラベル画像(右)に表示 された情報を用いて、スライドが属するケースを判断します。ケースペイン(1)からケースを選択します。

スライドリスト(項目4)に、そのケースに設定された識別済みでないスライドが表示されます。

5 識別されなかったスライドと、スライドリスト(4)のスライドを照合します。

スライドを選択し、挿入をクリックします。

そのスライドが識別されたことを示すために、そのスライドがスライドリストから削除され、右ペインの画像が更新されます。 の記号が付くと、スライドが手動で選択されたことを示します。

まだ、識別されえていないスライドがある場合、識別のためハイライトされます。

- 6 上の方法を繰り返して、識別されていないスライドを全て識別してください。
- 7 トレイのスライドが全て識別されたら、OK をクリックして、ダイアログを閉じます。キャンセルをクリックすると、手動によるスライドの識別が全て無効になります。
- 8 システム状態画面に、トレイの全スライドとその詳細が表示されます。手動で識別されたスライドには、ラベルの画像と記号 (スライドが手動で識別されたことを示す)が表示されます。

図 5-20: 処理前に手動で識別されたスライド

9 手動で識別されたスライドが通常どおりに処理されます。

下記のレポートに、スライド照合の恒久的記録としてスライド画像が表示されます。

- 9.4 処理イベントレポート
- 9.5 処理詳細レポート
- 9.6 ケースレポート

システムがスライドラベルの画像を取り込むように設定されていない場合

スライドを手動で識別することもできますが、そのためには、スライドトレイを取り外す必要がある場合があります。

自動的に識別されなかったスライドのスライドID とスライド位置番号(Covertile のネック下のスライドトレイに浮き彫り加工されている)をメモしてください。

スライドトレイを再ロードして、それに対応するスライドの位置をダブルクリックします(システムステータス画面のスライド染色ユニットの上部位置から下に向かって数える)。

5.1.6 処理進行インジケーター

処理進行インジケーターは、各スライドトレイの画像の下に配置されています。これにより、処理のステータスと進行が一目で確認できます。

- 5.1.6.1 処理 ステータス
- 5.1.6.2 処理の進行
- 5.1.7.1 処理の中止
- 5.1.8.1 「遅延スタート」の時刻設定

5.1.6.1 処理ステータス

各進行インジケーターの下に、現在の処理番号と処理のステータスが表示されます。処理ステータスの内容を以下に示します。

処理ステータス	内容
ロック解除	スライドトレイのロックが解除されています。
ロック	スライドトレイがロックされていますが開始できません。通常、この状態は、スライド 画像の取得が完了する前に発生します。
スライドの準備完了	スライド染色ユニットの全スライドの画像が取得されました。
起動	起動ボタンが押され、システムが起動前点検とスケジュールを実行しています。
拒否 / スライドの準備完了	BOND システムが処理を開始しょうとしましたが、失敗に終わりました。最も可能性の拒否の原因は、がない場合、紛失、バルク試薬レベル不足、または廃液容器の満杯です。イベントレポートを作成して、レポートに示してある問題を解決し、処理を再開します。
スケジュール済	処理のスケジュールは組まれていますが、操作は開始されていません。処理の進行インジケーターに、スケジュールされた開始時間が表示されます。
処理中(OK)	処理の実行中です。不測のイベントは発生していません。
処理中(通知)	処理の操作中です。予測できないイベントは発生しました。
	詳細を表示するには、イベントレポートをクリックしてください。
棄却	処理が棄却されました。この状態は、オペレーターが停止ボタンを押した時に生じます。
終了(OK)	操作が完了しました。不測のイベントは発生しませんでした。
終了(通知)	操作は完了しましたが、不測のイベントが発生しました。
	詳細を表示するには、イベントレポートをクリックしてください。

5.1.6.2 処理の進行

各 スライドトレイのグラフィック下のプログレスバーに進行状況が表示されます。プログレスバーは重要なタイミングを示し、そのタイミングに関連した現在の進行状況を示します。処理進行は4 段階から成り、それぞれ以下の色で表示されます。

- 青 スライドトレイがロックされていますが、処理は開始されていません。
- 赤 処理は開始されていませんが、開始許容時間が超過しています。
- 緑 処理中
- 紫-処理が完了し、現在保湿中です。

図 5-21に示すように、処理進捗度セクションにカーソルを置くと、「ロック後の経過時間」、「完了までの時間」、「完了後の経過時間」など、実行ステータスを表示することができます。

図 5-21:処理 ステータスの表示

スライドの準備完了-開始

スライドの画像が取得され、処理の開始準備が整ったら、起動ボタンを押すか、または「遅延スタート」を開始します。すると短時間、バーに以下のアイテムが表示されます(アイテム番号については図 5-22を参照)。

図 5-22: 処理進行(開始)

凡例

- 1 トレイがロックされた時刻
- 2 開始の許容時間(青色のバー)(開始の許容 時間とアラーム(124ページのセクション)を参照)
- 3 開始の許容時間の上限

- 4 現在の進捗状況
- 5 開始時間からの超過時間(赤色バー)
- 6 処理 ステータス(5.1.6.1 処理 ステータスを参照)

開始の許容時間とアラーム

スライドがロックされたら、できる限り早く処理を開始してください。「開始時間」(トレイがロックされてから処理が開始されるまでの時間)中はスライドが保湿されないので、この時間が長すぎると、脱パラフィン済みスライドでは、組織にダメージを与えることがあります。BOND ソフトウェアはトレイがロックされてから許容される開始までの時間を、ロードされたスライドタイプ(パラフィン切片または脱パラフィン済み切片)に応じて、モニターしてくれます。開始の許容時間は、「スライドの準備完了」プログレスバーの白いバーで表示されます(上記参照)。脱パラフィン済みスライドでは、開始の許容時間が経過しても処理が開始されない場合、アラームが鳴ります。

開始時間と脱パラフィンされたスライドのアラーム時間を下に示しました。時間は全て、トレイがロックされてからの時間を示しています。

トレイがロックされてからの開始許容時間またはア ラーム	トレイがロックされてからの時間 (分)
脱パラフィン済みスライドの開始許容時間	15
脱パラフィン済みスライドのアラームまでの時間	25
パラフィン包埋スライドの開始許容時間	60

開始時間内に処理が開始されない場合、トレイを取り外して、手動でスライドを保湿することができます。トレイを再挿入すると、BONDソフトウェアは、新しい処理ID番号を割り当て、時間カウントを再開して、新たに処理を開始します。

「開始の許容時刻」は、直ちに実行を開始する場合にのみ適用されます。「遅延スタート」には適用されません。

スケジュール済

開始ボタン、または「遅延スタート」で処理が開始されると、システムでスケジュールが行われます。スケジュールから処理開始までの間(「遅延スタート」の場合は時間が長くなる可能性があります)に、プログレスバーに以下の項目が表示されます(項目番号については図 5-23を参照)。

図 5-23:処理の進行(遅延スタート)

凡例

- 1 処理開始の予定時刻
- 2 開始までの遅延時間(青色のバー)
- 3 処理時間(緑のバー)
- 4 現在の進捗状況

- 5 操作後の保湿時間(紫のバー)
- 6 処理が終了するまでのおよその時間
- 7 処理 ステータス(5.1.6.1 処理 ステータスを参照)

処理中

「処理中」フェーズでは、バーに以下の項目が表示されます(項目番号については、図 5-24を参照)。

図 5-24:処理の進行(処理中)

凡例

- 1 予定の開始時間
- 2 開始時間 青:開始OK。赤:開始の許容時間を超過
- 3 処理時間(緑のバー)
- 4 現在の進捗状況

- 5 操作後の保湿時間(紫のバー)
- 6 処理が終了するまでのおよその時間
- 7 処理 ステータス(5.1.6.1 処理 ステータスを参照)

5.1.7 処理の開始または中止

スライドトレイをロードしロックすると、処理が開始されます。トレイの画像が取得され、またシステムが以下を 点検して、処理が可能であることを確認します。

- 全スライドに互換性があること。
- 全試薬が利用可能であること。

スライドの画像が取得されると、処理のステータスが「スライド準備」に設定され(5.1.6.1 処理ステータスを参照)、開始フェーズにプログレスバーが表示されます(5.1.6.2 処理の進行を参照)。互換性のないスライドの問題が解決されると、全スライドが識別され、必要な試薬が全て存在しているかどうかを確認してから、処理が開始されます。

- 処理を直ちに開始するには、 をクリックします。遅延スタートの場合には、トレイを右クリックしてポップアップメニューから**遅延スタート**を選択します。詳細については、5.1.8 遅延スタートを参照してください。
 - 処理のステータスが「**開始」**に設定され、処理前点検とスケジュールを完了します。 この時プログレスバーは、「開始」フェーズのままになっています。
 - スケジュールが完了すると、「スケジュール済」に変更されます。
 この時プログレスバーは、「操作」フェーズになります。スケジュールされた開始時間が表示され、バーの左端に開始状態(「OK」または「許容時間を超過」)が表示されます。
 - 処理がスケジュールどおりに開始すると、「処理中(OK)」に変更されます。 開始の許容時刻を超過して警告やアラームが表示されても、実際に処理が開始するとクリアされます。ただしプログレスバーの開始セクションは赤のままです。
 - 開始とスケジュール済の状態が多少長時間続くことがあります。このとき、開始の許容時刻を超過する可能性があります。その可能性がある場合、スライドトレイのロックを解除して手動でスライドの保水を実施して再開することができます。なお処理開始前にトレイのロックを解除しても、処理が棄却されたとみなされず、処理を再開できます。

一度に1つの処理のみを開始します。次の処理を開始する前に、現在の処理を開始している/スケジュールしている必要があります。1回の各処理が開始した後しばらく待って、処理が正常に開始されたかを確認します。そうでない場合、処理状態が**拒否/スライド準備**に設定されています。5.1.6.1 処理ステータスを参照。このような場合は、イベントレポートを作成して、処理が開始されなかった理由を特定します(9.4 処理イベントレポートを参照)。

5.1.7.1 処理の中止

開始ボタンを押した後(または「遅延スタート」を起動した後)でも、処理が実際に開始されるまでは(処理が「開始」または「スケジュール済」の状態であれば)、処理を中止することができます。このとき処理が棄却されたとは見なされません。処理要求をキャンセルするには、処理モデュールのスライドトレイのロックを解除します(この間、開始ボタンと削除ボタンは無効になっています)。スライド情報はシステム内に残るため、後から処理を開始することができます。拒否された処理は、「スライド履歴」リストで、一本線で抹消されます。

一旦開始された処理を棄却するには、 をクリックします。処理モデュールは、現在のステップを完了してから処理作業を中止します。スライド履歴画面のステータスは、完了(通知)に変化します。

処理を中止する前に慎重に考えてください。棄却した処理を再開することはできません。また、処理未完了のスライドは損傷していることがあります。

5.1.8 遅延スタート

パラフィン処理スライドを使用した処理を、BOND-III および BOND-MAX システムで指定した将来の時刻(現在の時刻よりも最長1週間先)にスケジュールして開始することができます。例えば、夜間に処理を開始する設定にすれば、翌朝の始業時刻前までに処理が終了しています。スライドは処理開始まで安全に固定され、パラフィンも良好に保たれ、処理後の保水時間も短くて済みます。

ただし、Leica Biosystems 専用試薬以外の試薬を「遅延スタート」に使用すると、処理モデュールに長時間放置されるために、品質劣化を生じる可能性があります。使用試薬の製品データシートと、保管に関する情報を確認しておく必要があります。なお、Leica Biosystemsでは、検体スライド上に、コントロール組織をつけることを推奨いたします。

スケジュールされた終了時間が適切でない場合は、ロード/アンロードボタンを使用して、 SSA を増減します。スライドを再スキャンした後、希望の終了時間になるように遅延スタート 時間を調整することができます。

5.1.8.1 「遅延スタート」の時刻設定

遅延スタートでトレイを処理するには、通常どおりにスライドを準備して、スライドトレイをロックします。処理ステータスがスライド準備に設定されたら、システム状態画面のトレイを右クリックして表示されるポップアップメニューから遅延スタートを選択します。

「遅延スタート」ダイアログでトレイの処理の開始日時を設定し、OKをクリックします(日付と時間のセレクタの使用方法(215ページのセクション)を参照)。システムは通常通りに「開始」の状態になり、その他の操作と連動して処理をスケジュールします。するとトレイは「スケジュール済み」の状態で待機し、設定された開始時間になると通常の処理が開始されます。

プロトコールの状態画面

このセクションは、BOND-PRIME 処理 モジュールには適用されません。

この画面には、各スライドのステータスに関する詳細が表示されます。

プロトコール状態の画面を表示するには、システム状態の画面からプロトコール状態タブをクリックします。

図 5-25:プロトコールステータス画面

スライド処理の進行状況を表示するには、画面上部付近にある対応する「スライド位置」ボタンをクリックし ます。 なおスライドがないポジションのラジオボタンは淡色表示 され、それらを選択 することはできません。

患者の名前が、規定のスペース(スライドトレイ1、2、3)に収まらないくらい長すぎる場合、 その名前は、末尾が「…」と短縮されます。保存した患者のフルネームをポップアップフィールド に表示したい場合、短縮名の上にマウスポイントを重ねます。

スライド位置 を選択 すると、スライドの詳細の一部 とプロトコールの進行状況 が表示 されます スライドをさらに 詳しく表示するには、詳細の表示を選択し、「スライドのプロパティ」ダイアログを開きます。

選択したスライドのプロトコールステップがスライドの詳細の下に表示されます。現在のステップは青色で強調 表示されます。完了したステップには緑色のチェックマークが表示されますが、予期せぬイベントが発生した場 合は、
サアイコンが表示されます。

現在のステップに必要なアクション全てが実行されたが、次のステップが始まるまでに待機時間が存在する場 合、チェックマークまたは ♥ は灰色になります。これは次のステップが始まるまで灰色のままで、次のステップ が始まると通常の色に戻ります。

ステップリストを右 クリックして、ポップアップメニューで処理イベントを選択すると**処理イベント**が表示できます。または、ポップアップメニューで**スライドのプロパティ**ダイアログを開くこともできます。

5.3 メンテナンス画面

BOND-PRIME 処理 モジュールのメンテナンス情報 については、別書の BOND-PRIME ユーザーマニュアルを参照してください。以下の情報は、BOND-PRIME 処理 モジュールには適用されません。

メンテナンス画面を表示するには、システム状態画面からメンテナンスタブをクリックします。

図 5-26: メンテナンス画面

メンテナンス画面には、下に挙げた種々のメンテナンス作業のコマンドボタンがあります:

コマンド	内容
シリンジの交換	シリンジの交換時処理モデュールをコントロールします。
	12.13 シリンジを参照。
流路系のクリーニング	流路系のプライミングを実行します。
	流路系のクリーニング(296ページのセクション)を参照。
吸引プローブのクリーニング	BOND 吸引プローブクリーニングシステムを用いて吸引プローブをクリーニングします。
	12.6.1 吸引プローブのクリーニングを参照。
吸引プローブの交換	カスタマーサポートにご連絡ください。
バルク溶液 ロボットのプローブの洗 浄	プローブを清掃できるように、バルク溶液ロボット(BOND-III のみ)が所定の位置に移動します。
	12.12.1 バルク溶液ロボットプローブのクリーニングを参照。

コマンド	内容
バルク溶液 ロボットのプローブを交換	カスタマーサポートにご連絡ください。
メンテナンスレポート Mめんてなんすれぽーと	選択した処理モデュールのメンテナンスレポートを作成します。このコマンドは、常に利用可能です.
	5.3.1 メンテナンスレポートを参照。

メンテナンス画面には、現在選択されている処理モデュールの名前とそれに関連するメンテナンスのコマンドボタンが表示されています。選択したメンテナンス作業を実行する際に、一連のダイアログボックスが役に立ちます。

たとえば、メンテナンスがすでに開始されているなど、メンテナンス作業が利用できないときは、コマンドボタンが無効になります。また、処理モデュールが切断された場合、全てのコマンドボタン(メンテナンスレポートを除りが無効になります。

5.3.1 メンテナンスレポート

このセクションは、BOND-PRIME 処理 モジュールには適用 されません。

メンテナンスレポートは、選択された期間内における、特定の処理モデュールに関する情報を表示します。

- 1 臨床 クライアントで処理 モデュールのタブを選択して、システムステータス画面を表示します。
- 2 まず、メンテナンスタブをクリックしてから、メンテナンスレポートボタンをクリックします。

図 5-27: メンテナンスレポートダイアログボックス

まず、ドロップダウンリストから処理モデュールを選択して、次に日付コントロールの**からとまで**を使用して必要な期間を選択します。あるいは、**過去12ヶ月**をクリックすると、過去12ヶ月の期間を設定できます。

作成をクリックするとメンテナンスレポートが作成されます。

新しいウィンドウにレポートが表示されます。レポートの右上に、下表の情報が表示されます。

フィールド	内容
施設	管理者により施設設定画面の施設フィールドに入力された施設名。10.5.1施設設定を参照。
期間	レポートの期間(「から」~「まで」を日付表示)
処理モデュール	管理者 クライアントのハードウェアの設定画面上の名前フィールドに入力された処理モデュールの固有名 - 10.6.1 処理モデュールを参照。
シリアル番号	処理モデュールの固有のシリアル番号

レポートに関する注意点は次のとおりです。

- メンテナンス作業予定日が来る(このとき予定日が「至急」と表示される)と、システムステータス画面の処理モデュールアイコンの上に、(5.1.2 ハードウェアステータスのような)リマインダー通知を右クリックするよう注意アイコンが表示されます。\
- 次回のメンテナンス作業予定日は、処理済スライドの枚数または推奨作業間隔に基づいて決定されます。
- レポートの期間内にイベント履歴がない場合、履歴表の代わりに、これに類するステートメントが表示されます。
- 履歴表の最初の日付は、レポート期間の開始日か処理モデュールの試運転日(レポート期間の開始日以降に試運転が行われた場合)のどちらかです。それに該当する「前回のメンテナンス以降のスライド/交換」列の項目に表示されるスライドの枚数は常に「0」です。
- 履歴表の最後の日付は、レポート期間の終了日です。
- 各 スライド染色 ユニットのスライド枚数 と、全 3 台 のスライド染色 ユニットのスライドの総数。スライドの 枚数は、メンテナンス作業が成功裏に終わるたびに、「0」にリセットされます。
- 各 スライド染色 ユニットのバルク溶液 ロボットプローブに対 する個別 のスライド枚数 (BOND-III のみ)。
- 各スライド染色ユニットのシリンジに対する別のスライド枚数 (BOND-III のみ)。
- メインシリンジに対する個別のスライド枚数。

ろライド設定(BOND コントローラー上)

BOND システムによるスライド作成の標準ワークフロー(主な手順)を以下に示します。

- 1 スライド上に切片を作成する。
- 2 BOND ソフトウェアでスライドのケースを作成(または LIS からそのケースをインポートする場合もある)。
- 3 必要に応じて、医師の詳細を追加または編集。
- 4 スライドの詳細を入力(またはLISからインポートする場合もある)。
- 5 施設の業務基準に従ってコントロールスライドを作成。
- 6 スライドにラベルを貼付(既にLISのラベルが貼付されている場合を除分。
- 7 スライドトレイにスライドをセットし、処理モジュールに挿入する。

スライドの処理が開始されたら、スライド履歴画面で、特定のスライドやケースや処理に関するレポートが作成できます。詳しくは9スライド履歴(BONDコントローラー上)を参照してください。

標準ワークフローが施設に適さない場合は、他のワークフローが利用できます。

本章の構成は以下のとおりです。

- 6.1 スライド設定画面
- 6.2 コントロールの作業
- 6.3 ケースの作業
- 6.4 医師の管理
- 6.5 スライドでの作業
- 6.6 スライドのラベル付け
- 6.7 スライド設定のサマリーレポート
- 6.8 スライドとケースの臨時作成
- 6.9 スライドの互換性

6.1 スライド設定画面

スライド設定画面には、BONDに入力されたがまだ処理されていないケースとスライドが表示されます。LISが統合されているシステムでは、LISからインポートされたケースやスライドが表示されます。LISが統合されていないシステムでは、ユーザーがケースとスライドを作成し、必要に応じてこの画面で編集できます。スライドはケースに所属している必要があるので、スライドを作成する前にケースを作成しなければなりません。

スライド設定

スライド設定画面を表示するには、ファンクションバーのスライド設定アイコン

をクリックします。

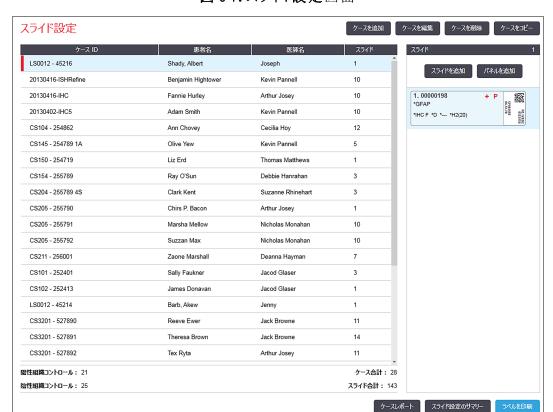


図 6-1: スライド設定画面

図 6-1は、スライド設定画面を示します。画面の右上にはケースの作業に関する機能が表示され、画面の右側にはスライドの作業に関する機能が表示されます。

6.2 コントロールの作業

Leica Biosystems では、BOND システムのコントロールを常用することを推奨しています。一部のアッセイ製品には、専用のコントロールスライドが付属していますが、製品の指示で施設のコントロールの追加を推奨しているものもあります。品質管理勧告の詳細については、アッセイ製品の使用説明書(IFU)を参照してください。コントロールの使用により、手順全体をテストする必要があります。詳細については、14.3品質管理を参照してください。

BOND システムの性能を適切にテストするために、Leica Biosystems では、検体と同一スライド上にコントロールをつけることを推奨いたします。

テスト組織と同一スライドにコントロール組織をつけるよう推奨しますが、BOND ソフトウェアでは、コントロール組織のみのスライドや、試薬コントロールのみのスライドも設定できます。コントロール組織のみのスライドには、検体と混同しないように、はっきりとマーキングをしてください。

6.2.1 コントロール組織

各スライドについて、以下のいずれかの組織であることをBONDソフトウェアに入力してください。

- テスト組織
- 陰性組織
- 陽性組織

これはスライドを追加ダイアログで設定されます(6.5.2 スライドの作成を参照)。テスト組織のあるスライドは「テスト組織」と設定してください。コントロール組織のみのあるスライドは、「陽性組織」または「陰性組織」のコントロール設定を使用してください。

「スライドを追加」ダイアログで新しいスライドの「組織の種類」が変更されるたびに、組織に対して正しいマーカーが選択できるように、マーカーフィールドは自動的にクリアされます。

スライド設定画面では、陰性組織のスライドは「-」、また陽性組織のスライドは「+」で示されます。「**スライド 履歴**」画面では、「**タイプ**」のカラムの各スライドに「テスト」、「陰性」、または「陽性」と表示されます。

コントロールスライドを明確に区別するために、デフォルトのスライドラベルのテンプレートの情報フィールドの1つとして「組織の種類」が含まれています。これにより、陽性組織コントロールのラベルに「(+)」、また陰性組織コントロールのラベルに「(-)」が大き印刷されます。テスト組織のフィールドには何も印刷されません。施設で作成されるスライドラベルにも、このフィールドが含まれることをお勧めいたします。(10.3 ラベルを参照)。

6.2.2 コントロール試薬

スライド作成時にマーカーとして、コントロール試薬一次抗体やプローブの代わりに選択することができます。

BOND ソフトウエア、IHC では、陰性 コントロール試薬 オプションがあります。スライドを追加ダイアログでIHC を選択し、マーカードロップダウンリストで*陰性を選択します。BOND はこのステップに BOND 洗浄液を割り当てます。

ISH については、BOND ソフトウェアにRNA とDNA 用の陰性と陽性のコントロール試薬が含まれています。これらの試薬は購入し登録してBOND システムにロードする必要があります。マーカーリストから適切なコントロールプローブを選択してください。

マーカーフィールドが該当するスライドラベルのテンプレートに含まれている場合、コントロール試薬のあるスライドは、スライド設定画面とスライドラベルの上に表示されるマーカー名以外に、特にマークは付いていません。

6.3 ケースの作業

本セクションでは、「ケース」での作業を可能にする、スライド設定画面の左側の機能について説明します。 説明セクションに続くサブセクションでは、ケースの詳細の追加、編集および削除の手順が記載されています。

下のセクション:

- 6.3.1 ケースコントロールおよび有効ケースの情報
- 6.3.2 ケース識別子
- 6.3.3 ケースの追加
- 6.3.4 ケースの重複、復活、有効期限
- 6.3.5 ケースの編集
- 6.3.6 ケースのコピー
- 6.3.7 デイリーケースオプション
- 6.3.8 ケースレポート

6.3.1 ケースコントロールおよび有効ケースの情報

新しいケースの詳細を追加するには、ケースを追加をクリックします(6.3.3 ケースの追加を参照)。

既存のケースの詳細 を編集 するには、ケースを編集をクリックします(6.3.5 ケースの編集 を参照) 。

既存のケースを削除 するには、**ケースを削除** をクリックします(6.3.5.1 ケースの削除 を参照) 。

ケースをコピーしてそのケースにスライドを追加するには、ケースをコピーをクリックします(6.3.6 ケースのコピーを参照)。

ケースを右クリックしても、ポップアップメニューで、編集、削除、コピーの各コマンドにアクセスことができます。

ケースレポート(ケースリストの下)をクリックすると、選択しているケースのレポートが表示されます(6.3.8 ケースレポートを参照)。

ボタンの下の表には、次のような有効なケースの情報が表示されます。

ケースID	ケースの識別子。どんな英数字でも使用できます。
	このフィールドには文字と数字を記入することができるので、表のケース \square 列へッダーをクリックすると、このフィールドをテキストとして並べ替えることができます。例えば「 10 」で始まる \square は、 \square で始まる \square は、 \square で始まる \square は、 \square で始まる \square に並べられます。
患者名	患者の識別子
医師名	患者を担当した医師名または病理専門の委託医師名。
スライド	選択したケースに設定された、未処理スライド数
	スライドの処理が開始されると、スライドはスライド設定画面からスライド履歴画面に移動するため、この値は適宜更新されます。

左側で赤色のバーが表示されたケースは、1つまたは複数の優先LISスライドがあることを示します(11.2.5 優先スライドを参照)。

有効なケースリストの下には、全てのケースとスライドのサマリーが表示されます(以下を参照)。

スライド合計	現在入力されているが未処理のケースに対するスライドの総数。
ケース合計	有効なケースの総数。
陰性組織コントロール	現在入力されているが未処理のケースに対する陰性組織コントロールの総数。
陽性組織コントロール	現在入力されているが未処理のケースに対する陽性組織コントロールの総数。

6.3.2 ケース識別子

BOND システムでは、ケース ID とケース番号の2つの主なケース識別子が使用されます(ソフトウェア内では、それぞれ、ケース ID とケース番号)。

- ケースID:施設固有の識別法に従ってユーザーが入力するケースID。BONDで作成されるケースでは、ケースIDは、ケース作成時に、ケースの追加ダイアログに入力されます。LIS-ipシステムでは、ケースIDはLISから送られてきます(「アクセス番号」などの名称で呼ばれることがあります)。
- ケース番号: BONDシステムが、システム内の全ケースに自動的に割り当てる固有の識別番号(BONDシステムで作成されるか、LISから送られてくる)。ケース番号は、ケースのプロパティダイアログに表示されます。

BOND の 4.1 以前のバージョンでは、固有なケース ID を割り当てるという必要条件はなかったので、2つ以上の全く異なるのケースが同じケース ID を持つことも可能でした。だたし、これらのケースは、患者名が異なる可能性が高いので、ケース番号も異なります。BOND の 4.1 以降のバージョンでは、新規ケース ID はケースごとに異なる必要があります。

ケースは、患者名で識別されることもありますが、患者名は必須ではなく、ユニークである必要もありません。

6.3.3 ケースの追加

ケースを追加するには、スライド設定画面を開いてから、以下の手順を行ってください。

1 ケースを追加ダイアログを表示するには、**スライド設定**画面でケースを追加をクリックします(図 6-2を参照)。

図 6-2:「ケースを追加」ダイアログ

2 適宜、ケースID、患者名、ケースコメント、および医師フィールドを入力します。

(ださい。

ケース情報がまったくないケースを追加することもできます。

- 3 必要な医師名が医師 リストにないときは、**医師の管理**をクリックして**医師の管理**ダイアログを開き、そこで医師を追加します(6.4 <mark>医師の管理</mark>を参照)。
- 4 このケース用に作成したスライドの分注量を選択します(既存のデフォルトの分注量と異なる場合)。 BOND-III および BOND-PRIME 処理モジュールで処理される全スライドに、分注量 150 µL を選択します。 また、全 ISH スライドの全ての処理モジュールのタイプで分注量 150 µL を選択します。 スライドの使用可能なエリアと分注量については、6.5.8 分注量とスライド上の組織の位置を参照して
- 5 **調製プロトコール**リストから調製のオプションを選択し(図 6-2を参照)、このケースに作成されたスライドでのデフォルトとして設定します。
- 6 システムに詳細を入力せずにダイアログを閉じるには、キャンセルをクリックします。

7 ケースの詳細を入力したら、OKをクリックします。 ケースがケースリストに追加されます。

システム内に既にケースIDが存在する場合は、「ケースIDの重複」ダイアログが開きます (6.3.4 ケースの重複、復活、有効期限を参照)。

6.3.4 ケースの重複、復活、有効期限

BOND 4.1 以前のソフトウェアバージョンでは、全〈異なるケースに同じケースIDを割り当てることができました。これらのケースは、一般に、患者名で識別できる可能性があり、また、各ケースのケース番号が異なっているので、ケース番号を使えば完全に識別することができました。BONDではもはや、新しいケースに既存のケースと同じケースIDを付けることは許可されません。新しいケースには、固有のケースIDを付ける必要があります。ケースIDが同じ場合には、既にシステム内にあるケースと同じであると認識されます。

既にシステム内にあるケースID と同じケースを入力した場合、ケースID の重複ダイアログが現れて、同じケースID を持つ既存のケースが表示されます。既存のケースを使用するには、それを選択して、利用選択をクリックします(ケースの併合(138ページのセクション6.3.4.1)も参照)。もしくは、ダイアログをキャンセルしてケースID を変更し、そのケースを新しいケースとして作成します。

ケースIDの重複ダイアログ中のケースは、削除された可能性や、有効期限切れ(ケース内のスライドが全て処理済み - 下記参照)の可能性、または現行のケースでスライド設定画面にまだリストされている可能性が考えられます。有効期限切れのケースを選択してケースリストに復元した場合、そのケースは「復活」ケースと呼ばれます。

LIS ケースのケース ID の重複については、重複するケース ID(228ページのセクション)を参照してください。

6.3.4.1 ケースの併合

ケースID を編集して既存のケースID と同じにする場合、それに続いて表示されるケースID の重複 ダイアログの利用選択をクリックします。編集したケースから作成された未処理のスライドは、全て、既存のケースに移動します。

未処理のスライドを含むケースのみが編集できます。したがって、処理済みのスライドのケースを変更することはできません。

6.3.4.2 処理済みケースのライフタイム

ケース内の最後のスライドの処理が開始されると、(デフォルト設定では)ケースがスライド設定画面から削除され、スライド履歴画面に表示されます。

BOND で、ケース内の最後のスライドを処理した後にスライド設定画面上にケースを保存しておく日数を設定することができます。管理者の施設画面で、この「処理済みケースのライフタイム」を設定します (10.5.2 ケースとスライドの設定を参照)。

有効期限切れのケースはシステムに保存されていますが、表示することはできません。有効期限切れのケースをリストに戻すには、再びケースを追加(復活)するか、またはLISからケースにスライドを追加します。

処理済みスライドを含んでないケースは、自動的にスライド設定画面から消去されることはありません。

6.3.5 ケースの編集

ケースの詳細 を編集 するには、リストからケースを選択し、ケースを編集をクリックします。すると、「ケースのプロパティ」ダイアログが表示されます。このダイアログは、前述の「ケースを追加」ダイアログと同じ方法で使用できます。

スライドのラベルが印刷済みであるケースの詳細を編集する場合、スライドを処理する前に再度ラベルを印刷します(画面にこの旨のメッセージが表示されます)。

6.3.5.1 ケースの削除

ケースを削除するには、リストからケースを選択して、ケースを削除をクリックします。

スライド設定画面上のBONDのケースが、未処理のスライドのみの場合、「有効期限切れ」にすると、手動でケースを削除することができます。(未処理のスライドがなくなると、直ちに、全てのLISケースが自動的に有効期限切れとなります。)

ケースが処理中または処理済みのスライドを含む場合、手動で削除することはできません。

ケースを削除すると、そのケース用に作成された未処理スライドも全て削除されます。

削除されたケースの詳細情報は回復できますが、スライドは回復できません。

6.3.6 ケースのコピー

ケースをコピーすると、患者に新しいケースを簡単に設定できます。必要に応じて新しいケースでケース詳細を変更することもできれば、そのまま維持することもできます。新しいケース番号は自動的に作成されますが、新しいケースIDを入力する必要があります。

ケースに削除したプロトコールを参照するスライドが含まれている場合、ケースはコピーできません。

コピーされたスライドは、スライド設定画面でラベル印刷と処理が可能となります。不必要なスライドは、右クリックしてスライドを削除を選択することで削除できます。

ケースをコピーするには:

- 1 スライド設定画面の左側のケースリストから、コピーしたいケースを選択します。
- 2 ケースをコピーをクリックします。ソフトウェアにケースをコピーのダイアログが表示されます。
- 3 必要に応じて、新しいケースIDを入力してケースの詳細を編集します。
- 4 必要に応じて未処理スライドまたは全スライドを選択します。
 - 未処理スライド-オリジナルのケースから未処理スライドのみをコピーします。
 - 全スライド・オリジナルのケースから全部 (未処理、処理中、処理済)のスライドをコピーします。システムは、新しいケースの全部のスライドに、未処理のマークを付けます。
- 5 **OK**をクリックします。

このシステムは新しいケースを作成し、選択されたオプションに応じてスライド(コメント全てを含む)をコピーします。コピーされたスライド(LISを含む)は全て、スライドを追加ダイアログで作成したスライドと同様に動作します(6.5.1 スライドフィールドとコントロールの説明を参照)。

6.3.7 デイリーケースオプション

BOND システムは、24時間ごとに新たにケースを作成して、1日分のスライドを全て同一のケース内に作成することができるように設定できます。これによって患者名やケースIDを入力する必要がなくなるので、小量のスライドしか処理しない施設で時間を節約することができます。各「デイリーケース」には次のプロパティが添付されます。

- ケースIDが、新しい日付で設定されます。
- 管理者で設定されたシステムのデフォルトの分注量と調整プロトコール。管理者で設定されたシステムのデフォルトの分注量と調整プロトコール。これらは編集することができます。
- **患者名** と**医師** フィールドが空白となり、変更できません。

デイリーケースオプションを用いて通常の方法で個々のケースを作成することもできます。デイリーケースオプションを設定する手順については、10.5.2 ケースとスライドの設定を参照してください。

6.3.8 ケースレポート

ケースごとに別々のレポートを作成することができます。レポートには、ケースで使用されるスライドIDやプロトコールや試薬など、ケース内のスライドに関する基本的なケースの詳細や情報が記載されます。各スライドについてコメントを記入する欄があり、このコメントはレポートに印刷されます。詳しい説明は9.6 ケースレポートをご覧ください。

スライド設定 と**スライド履歴**の画面からのケースレポートとを作成します。適宜ケースまたはスライドを選択し、ケースレポートボタンをクリックします。ケースレポートには、処理モデュールで処理されロック解除されたスライドの試薬詳細のみが含まれています。

6.4 医師の管理

BOND には医師のリストを保存し、必要に応じて、ケースの詳細を追加できます。ケースの追加またはケースのプロパティダイアログの「優先」医師のリストから選択するか、同じケースのプロパティダイアログで開いた医師の管理ダイアログから医師を追加または編集します。

各医師について次のフィールドが表示されます。

- 名前: 医師の名前
- LIS ID: 施設情報システム(LIS) から割り当てられた固有のID(該当する場合)
- 優先: 医師の優先ステータス(ケースを作成する際には、優先医師のみがドロップダウンリストに表示されます)。優先状況は、「医師を編集」ダイアログで設定します.

これらの値は**医師の編集**ダイアログにも表示されます。さらに、**医師を編集**ダイアログには以下の項目もあります。

- ID: BOND システムが自動的に生成して割り当てた個別のID。
- コメント: 一般 コメントや追加名前情報を入力できる編集フィールド

医師の管理ダイアログを開いたまま、**追加**をクリックして新しい医師を追加するか、**編集**をクリックして既存の 医師の詳細を編集します。編集は、コメントフィールドと、推奨ステータスの変更に限られます。医師を作成 した後では医師の名前を変更することはできません。

医師の管理ダイアログから医師を削除することができます。削除された医師を使って既に作成されたケースには、医師名がまだ表示されていますが、新しいケースにはその医師を使用することはできません。新しい医師の代わりに削除された医師の名を再使用することはできません。

6.5 スライドでの作業

このセクションでは、スライド設定画面でのスライドの作成と管理について説明されます。最後のセクションには、分注量の設定と、それがスライド上の組織の配置にど影響するかが説明されます。

- 6.5.1 スライドフィールドとコントロールの説明
- 6.5.2 スライドの作成
- 6.5.3 スライドのコピー
- 6.5.4 スライドの編集
- 6.5.5 スライドの削除
- 6.5.6 手動でスライドを識別する
- 6.5.7 スライドのパネルの追加
- 6.5.8 分注量 とスライド上の組織の位置

6.5.1 スライドフィールドとコントロールの説明

スライドリストの上部には、2つのボタンがあります。

- スライドを追加をクリックすると、選択されたケースにスライドを追加できます。
- パネルを追加をクリックすると、選択されたケースにパネルを追加できます。
- 詳細については、6.5.7 スライドのパネルの追加を参照してください。

画面右のスライドリストには、画面左で選択したケースのスライドの詳細が表示されます.各スライドについて、スライドIDとそのスライドで実行するプロトコールの詳細が表示されます.スライド右のラベルエリアは、どこで作成されたかを示すために以下のようにカラーコードされます:

スライドを追加ダイアログで作成されたスライド

(6.5.2 スライドの作成を参照)

黄色:

スライドの識別ダイアログで作成されたスライド

(6.8 スライドとケースの臨時作成を参照)

薄い灰色:

LISスライド

(11 LIS インテグレーションパッケージ(BOND コントローラー上)を参照)

さらに、スライドには以下のシンボルも表示されます。

マイナス記号:

陰性組織スライド(6.5.2 スライドの作成の手順4を参照)

プラス記号:

陽性組織スライド(6.5.2 スライドの作成の手順4を参照)

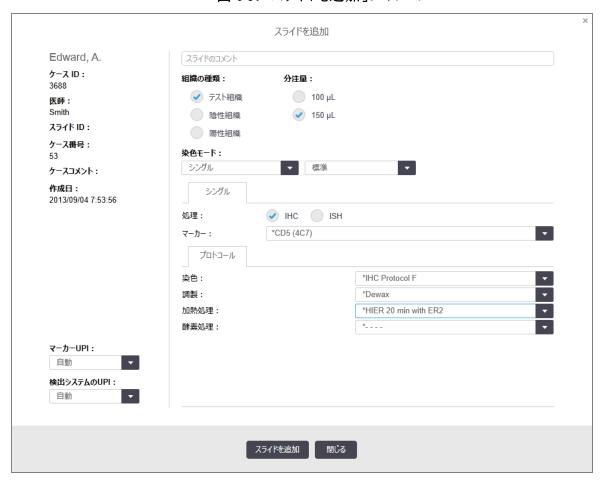
赤いアルファベットのP:

LIS優先スライド(11.2.5優先スライドを参照)

検 体 ラベル:

印刷 されたスライドラベル

スライドをダブルクリックすると、そのスライドのプロパティダイアログが開きます。右 クリックしてスライドを削除するか、スライドのラベルを印刷します。

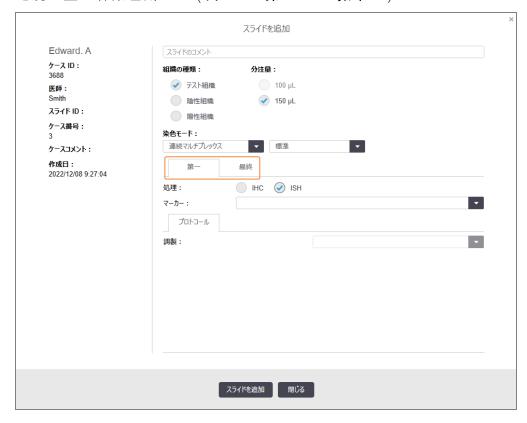

6.5.2 スライドの作成

Bond[™] Oracle [™] HER2 IHC System 用 にスライドを作成 するには、製品 に同梱 されている使用説明書(IFU)を参照してください。

新しいスライドの作成方法

- 1 ケースリストでケースをクリックします。
- 2 スライドを追加をクリックして「スライドを追加」ダイアログを表示します。

図 6-3:「スライドを追加」ダイアログ


新しいスライドには、自動的に固有の**スライドID**が付けられますが、ダイアログで**スライドを追加**ボタンをクリックしてスライドが保存されるまで表示されません。

- 3 必要に応じて、スライドのコメントを追加します。
- 4 組織の種類(テスト組織、陰性組織、陽性組織)を選択するには、**組織の種類**グループのラジオボタンのいずれかをクリックします。
 - 6.2.1 コントロール組織 を参照してください。コントロールに関する詳細については、14.3.2 組織 コントロールを参照してください。
- 5 必要に応じてスライドの分注量を変更します(6.5.8 分注量とスライド上の組織の位置を参照)。

- 6 染色モードを選択します。
 - **a 染色モード**フィールドで、シングル染色を適用する場合はシングル(デフォルト)を選択し、二重染色スライドの場合は連続二重または並行二重を選択します(7.1.1 染色モードを参照)。
 - b 第2フィールドで**標準**(デフォルト)を選択します (Leica Bond ™ Oracle™ HER2 IHCシステムの場合にのみ、**Oracle** を選択のこと)。
 - c 連続二重染色の場合は、**染色**ドロップダウンリストから染色の数を選択します。最大2つの染色を選択できます。

表示されるタブは選択した染色モードに応じて異なります。

- シングル・**シングル**タブ
- 並行二重 **並行二重** タブ。
- 連続二重 各染色用のタブ(例として、第一タブ、最終タブ)。

7 表示されたタブで、

- a 染色プロセス(IHCまたはISH)を選択します。
- b マーカードロップダウンリストから、一次抗体またはプローブを選択します。
- c 陰性のIHCコントロール試薬を使用して処理するには、デフォルトの陰性試薬 「*Negative」、または ユーザーが作成した陰性試薬を選択します(14.3.3 IHCの陰性試薬 コントロールを参照)。
- d 陰性のISHコントロール試薬を使用して処理するには、「*RNA Negative Control Probe」または「*DNA Negative Control」を選択します。
- e 陽性のISHコントロール試薬を使用して処理するには、「*RNA Positive Control Probe」または「*DNA Positive Control Probe」を選択します。

マーカードロップダウンリストの項目を追加または削除するには、ソフトウェアの試薬の設定画面の試薬で、優先フィールドを選択または非選択にします。詳細については、8.2.1 試薬の追加または編集を参照してください。

- f それぞれの操作段階に応じて、適切なプロトコールを選択します。
- g 一次抗体またはプローブを選択すると、デフォルトのプロトコールが設定されます。各手順に合うプロトコールが正しく設定されているかどうかを確認し、必要に応じて該当するダイアログから新しいプロトコールを選択してください。特定の手順においてプロトコールが不要であれば、「*---」を選択してください。
- h デフォルトのプロトコールは、「**試薬の設定」**画面で設定されます。8.2.1 試薬の追加または編集を参照してください。
- j マーカードロップダウンリストの項目を追加または削除するには、ソフトウェアの「試薬の設定」画面の試薬で、優先フィールドを選択または非選択にします。詳細については、7.2.1 プロトコールの詳細を参照してください。
- j ISH スライドの場合、プローブの適用プロトコールまたはプローブの取り外しプロトコールを選択できます。あるいは、プローブの適用なしプロトコールまたはプローブの取り外しなしプロトコールを選択できます。
- k プローブの適用なしプロトコールまたはプローブの取り外しプロトコールが選択されている場合は、ハイブリダイゼーションプロトコールとディネーチャープロトコールも選択解除されていることを確認します。
- 8 単一染色の場合、通常、ダイアログの左側にある一意の製品識別子(UPI)のデフォルトを「**自動」**のままにしておく必要があります。ただし、特定のスライドの特定のロット番号を選択する場合(ロット間の検証の場合など)は、次のフィールドのドロップダウンリストから選択します。
 - マーカーUPI マーカーの試薬 コンテナの UPI
 - **検出システム UPI** 検出 システムの UPI。

BOND-MAX および BOND-III でスライドを同時に処理するには、UPI を同じにするか、**自動**を選択する必要があります。

9 スライドを追加をクリックします。

スライドを追加により、スライドを追加ダイアログに表示されているスライドとその詳細を追加します。その後もダイアログは開いたままであるため、選択されたケースに多くのスライドを簡単かつ迅速に追加することができます。

10 ケースにスライド追加が終了したら、閉じるをクリックします。

6.5.3 スライドのコピー

削除したプロトコールを参照するスライドは、コピーすることはできません。

既存のスライドをコピーするには:

- 1 コピーしたいスライドをダブルクリックすると、スライドのプロパティダイアログが開きます。
- 2 **スライドをコピー**をクリックします。 ダイアログが**スライドを追加**に変化し、**スライドを追加**ボタンが表示されます。
- 3 スライドの詳細を確認して、必要に応じて変更します。
- 4 スライドを追加をクリックします。

コピーされたスライドと同じケースに、新しいスライド(コメント全てを含む)が追加されます。

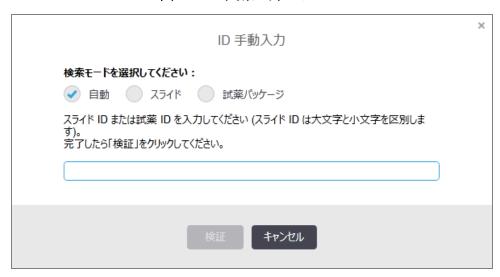
6.5.4 スライドの編集

スライド設定画面でスライドの詳細を編集するには、スライドをダブルクリックして**スライドプロパティ**ダイアログを開きます。6.5.2 スライドの作成で説明した方法で詳細を変更します。

ラベルが既に印刷されているスライドの詳細を編集した場合には、スライドを処理する前にラベルをもう一度印刷します。

6.5.5 スライドの削除

スライドリストからスライドを削除するには、スライド設定画面のスライドリストでスライドを右クリックし、サブメニューからスライドを削除を選択します。選択したスライドは、削除キーでも削除することができます。


6.5.6 手動でスライドを識別する

BOND システム内の任意のスライドをいつでも識別することができます。ファンクションバーで検索アイコン

をクリックして、ID手動入力ダイアログを開きます。

図 6-4:ID 手動入力ダイアログ

BONDシステムによって印刷 されるなど、二次元バーコードラベルがあるスライドについては、スライドのラベルをスキャンして**スライドのプロパティ**ダイアログを開きます。あるいは、8 桁の数値ID(先頭のゼロを含む)を手動で入力してから、検証をクリックします。

6.5.7 スライドのパネルの追加

パネルとは、組織タイプにより既に作成されたマーカーセットのことです。パネルを使用すると、スライドに、通常同時に使用されるマーカーを簡単に追加できます。8.4 試薬パネル画面を参照のこと。

ケースにスライドのパネルを追加するには、スライド設定画面で以下を実行します。

- 1 パネルを追加をクリックします。パネルからスライドを追加ダイアログが表示されます。
- 2 ドロップダウンリストからパネルを選択します。パネル中のスライドが表示されます。
- 3 必要に応じて、チェックボックスの選択を解除してスライドを除外します。 スライドを追加をクリックします。

BONDがスライドをケースに追加します。

- ISHスライドでは、分注量は、自動的に150 µLに設定されます。
- IHCスライドについては、分注量はケースのデフォルト値に設定されます。
- 全てのスライドについて、調製プロトコールはケースのデフォルトに設定されます。

パネルを使用して、シングルまたは並行多重染色モードでスライドを追加できますが、連続二重染色モードでは追加できません。

6.5.8 分注量 とスライド上 の組織 の位置

BOND ソフトウェアには2 つの分注量の設定があり、スライドを追加ダイアログで各 スライドについて設定できます(6.5.2 スライドの作成を参照)。

100 μ L 設定は、BOND-MAX 処理 モジュールの IHC スライドにのみ使用できます。BOND-III および BOND-PRIME で処理 される全 スライドと全 ISH スライド(全ての処理 モジュールタイプ)では、150 μ L 設定を使用しなければなりません。BOND-PRIME処理 モジュールでは、以下と異なる分注方法が使用されます(7プロトコール(BONDコントローラーで)を参照)。

BOND-III および BOND-MAX 処理 モジュールでは、分注量の設定によって、次のように、スライド上で試薬が分注される位置と、分注量が決定されます。

- 100 µL分注では、Covertile をスライドの約半分まで引き戻し、吸引プローブが Covertile の上部(スライドのほぼ中央)に抗体を分注します。
- 150 µL分注では、Covertileは、スライドのほぼ全体をカバーします。ここでもまた、試薬は、Covertileの上部に供給されるので、スライド上の広い範囲が試薬でカバーされることになります。

スライドで試薬が供給されるエリアに相違があるということは、組織を正しい位置に配置することが重要であることを意味します。100 μL 分注では、通常、1 個の検体しか染色できないので、スライドの下半分(ラベルから遠い位置)に配置しなければなりません。150 μL 分注では、もっと簡単にスライド上に2 個の検体を配置することができ、また、1 個の場合は中央に配置してください。各分注量でのスライドの使用可能エリアは、図 6-5 に示してあります。Leica BOND Plus スライドとLeica BOND Apex スライドには、組織の配置位置がマークされています。

100 μL 150 μL 使用可能エリア

図 6-5:各分注量設定でのスライドの使用可能エリア

- 斜線を付けた部分は、各分注量でのスライドの使用可能エリアを示しています。
- 位置の印になる点が、Leica BOND Plus スライドとLeica BOND Apexスライドに示されます(2.6.1 スライドを参照)。

BOND-III および BOND-PRIME 処理 モジュールは、デフォルトで 150 μ L を分注します。分注量 100 μ L 用のスライドをロードすると、処理を開始できません。

BOND-MAX および BOND-III の両方のIHC スライドでは、抗体の分注量は**スライドを追加**ダイアログ – 100 μ L または150 μ L に示されています。ISH スライド(両方の処理 モジュールタイプ)では、150 μ L 設定が強制され、処理 モジュールは 150 μ L での Covertile とプローブ位置を使用します。しかし、BOND システムはプローブの場合 150 μ L 以上分注します:

- RNA プローブでは、BOND は、220 µL (150 µL と70 µL の2段階) を分注します。
- DNA プローブでは、BOND は、240 μL (150 μL と90 μL の2段階) を分注します。

洗浄や他のステップでは、プロトコールに応じて、異なる分量が分注されます。

デフォルトの分注量

BOND-MAX の IHC では分注量(150 μ L または 100 μ L) はスライドごとに設定できますが、BONDでは 2 種類のデフォルトを設定できます。システム全体のデフォルト設定が設定できます(10.5.2 ケースとスライドの設定を参照)。これは、ケースのデフォルトがある各 ケース(「ケースを追加」ダイアログにより設定)について修正できます(6.3.3 ケースの追加を参照)。さらに「ケースを追加」ダイアログから各 スライドの分注量を設定できます(6.5.2 スライドの作成を参照)。

同時に処理するスライドは全て同じ分注量にする必要があります(6.9 スライドの互換性を参照)。

6.6 スライドのラベル付け

BOND システムで染色 されるスライドは、正しいプロトコールで処理するために、ソフトウェアが識別できるラベル表示を必要とします。BOND システムで作成されたスライドラベルにはすべてラベル ID があり(2D バーコードとして表示される)、処理モジュールでスライドを自動識別するときに使用されます。LIS で作成されたラベル(2D バーコードID) も自動識別できます。しかし、ラベル ID の汚れなどの原因でラベル ID を自動的に識別できない場合のために、スライドラベルに、人が読んでわかる情報も記載しておいたほうがよいでしょう(10.3 ラベルを参照)。

スライドを処理 モジュールにロードする前に、必ずラベルを貼付してください。ID イメージャーが効果的にラベルID(2D バーコード)をスキャンできるように、ラベルを正しく貼付してください。

Leica Biosystems スライドラベラーを使用するには、BOND が提供するラベルを使用する必要があります。

- 6.6.1 ラベルの印刷、およびスライドへの貼付
- 6.6.2 スライドID とラベル ID

6.6.1 ラベルの印刷、およびスライドへの貼付

- 1 スライド1枚のラベルを印刷するには、スライドを右クリックし、「ラベルの印刷」を選択します。この場合、スライドラベルを印刷ダイアログは表示されません。定義されたポッドを含むBOND-ADVANCEシステムでは、ラベルの印刷にデフォルトのスライドラベラーを使用します。もしくは、リストの最初にあるスライドラベラーを使用します(10.6.3 スライドラベラーを参照)。
- 2 全てのスライドが設定されたら、スライド設定画面でラベルを印刷をクリックします。
- 3 以下のどちらのスライドラベルを印刷するかを選択します。
 - 全ての未発行ラベル:ラベルが印刷されていない全ケースのスライド。
 - 現在のケースの未発行ラベル:ラベルが印刷されていない現在のケースのスライド。
 - 現在のケース 現在選択されているケースの全スライド(印刷済みのものも含む)。

スライドのラベルはケースの作成順に印刷され、各ケースではスライドの作成順に印刷されます。

4 使用したいスライドラベラーを選択します。

(管理者のハードウェア画面でデフォルトラベラーを設定します。10.6.2 ポッドを参照)。

5 印刷をクリックします。

スライドラベルの印刷中は、スライドの設定画面の左下のアイコンが点滅します。

6 スライドのすりガラス部(ラベルの貼付部分)が清浄で乾いていること確認します。

- 7 スライドIDがスライドの端に平行に配置されるようにしてラベルを貼付します。ラベルの正しい面が上(組織がスライドの同じ側)に来るように貼付しなければなりません。
 - ラベルは真っ直くに貼付してください(曲がっていると、処理モデュールは画像を取得できません)。
 - 確実に貼付するため、BONDプリンターラベル領域全体にしっかり圧をかけてください。
 - プリンターラベルは、表面にしっかりと貼付する必要があります。プリンターラベルがスライドの端からはみ出してはなりません。
 - ラベルが液体に浸されている場合は、保管する前に乾かしてください。

図 6-6: ラベルは、スライドの四隅に収めてください

正:

ラベルが真っ直 くで、スライドの 四隅に収まって います。

誤:

ラベルがスライド の端からはみ出 しています。

誤:

ラベルが曲 がっ ています。

注意: ラベル全体をスライドの四隅に収めてください. また粘着部分が露出していると、スライドラベル(およびスライド)がCovertile やその他の装置に張り付いて、スライドの損傷の原因となります。

BONDプリンターリボンとラベルロールを交換する場合は、同じ品番のインクリボンと交換してください。ラベルロールとインクリボンの交換に関する指示は同梱されています。

試薬に長時間浸漬したり、アグレッシブな手順の対象となったりするプリンターラベルの場合は、以下の点について検討してください。

- 治療が行われた後に、スライドラベルを貼付します。
- スライドの表面に二次識別子を貼付します。
- BONDプリンターリボンとラベルの浸漬を回避または制限します。
- 保護オーバーレイを適用します。

使用済みインクロールには、印刷された情報の反転画像があります。情報に個人を特定できる情報が含まれている場合、使用済みインクロールの廃棄は、施設の手順や地域のプライバシー関連規則に従って行う必要があります。

接着剤とインクの耐久性は、お客様のテスト条件によって異なります。BONDシステムプリンターリボンとラベルを使用する際は、それらの手順と条件について施設で確認する必要があります。

装置外での脱パラフィン、および抗原賦活化

BOND システムを使用せずに装置外で脱パラフィンと抗原賦活化を行う場合は、スライドにラベルを貼付した後に行う方ことをお勧めいたします。これで、BOND システムでスライド詳細やプロトコールをセットアップする間にドライアウトすることを防げます。また、これらのステップの後の濡れたスライドにラベルを貼ることを避けられます。

処理 モジュール外での脱パラフィンにキシレンを使用するときは、印刷が不鮮明にならないように、ラベルに接触しないようにしてください。

ベンゼン誘導体、D-リモネンおよび脂肪族炭化水素、アセトン、水および水性ベースの試薬に長い時間浸漬すると、スライドIDラベルの接着効果が減少し、印刷の完全性が失われる可能性があります。ラベルは、長期間水中に浸さないことをお勧めいたします。LBSウェブサイトで特定の製品に関する情報を参照してください。

注意:BOND-IIIおよびBOND-MAX処理 モジュールで脱 パラフィンを行 づ場合は、BONDDewax Solutionのみを使用してください。

BOND-PRIME処理 モジュールで脱 パラフィンを行 う場合は、BOND-PRIMEDewax Solutionのみを使用してください。

キシレン、キシレン代替品およびその他の試薬を使用しないでください。処理モジュールの部品の劣化や液漏れの原因となることがあります。

6.6.2 スライドID とラベル ID

BOND システムは、新しい**スライド**が作成されるたびに、固有の「スライドID」を提供します。BOND システムはまた、**スライドラベル**が印刷されるたびに、固有の「ラベルID」を提供します。ラベル ID は 2D バーコードです。

LIS スライドでは、スライドの ID が LIS で定義 されることもあり、それは8桁以下数値の場合もあります。

スライドの識別

このセクションは、BOND-PRIME 処理 モジュールには適用 されません。

ラベルがスライド上に配置されている場合、システムは、スライド染色ユニット内のどの位置でもスライドを識別することができます(5.1.5.1 スライドの自動識別を参照)。

スライドIDのないスライドやスライドIDが識別できないスライドは、手動でシステムに識別させる必要があります (5.1.5.2 オンボードスライドの手動識別を参照)。もしくは、ラベルを印刷してスライドに貼付して、もう一度画像を取得してください。

管理者のラベル設定画面のスライドラベルで、表示させたい情報を設定してください(10.3 ラベルを参照)。

6.7 スライド設定のサマリーレポート

「スライド設定のサマリー」には、スライド設定画面で現在設定されている全スライド(全ケース)が表示されます。スライドはケースごとに分類され、供給されるマーカーや試薬量などの詳細が表示されます。レポートの下には、レポートのスライドに必要な全ての試薬と試薬システム、およびそれぞれの検査数が表示されます。各 BOND 処理モジュールで、別々のリストが表示されます。

レポートで詳細を表示するには、少なくとも1つのBOND-PRIME処理 モジュールを作動させる必要があります。

このレポートは準備に役立ちます。これにより、各トレイに配置されたスライドが互換であるかどうかが確認できます(6.9 スライドの互換性を参照)。さらに、ロードしなければならない試薬と試薬システムが表示されます。

スライド設定レポートを作成するには、スライド設定のサマリーをクリックします。

レポートには、各スライドについて以下の情報が表示されます。

フィールド	内容
スライドID	BOND システムでは、各スライドに固有のIDを割り当てます
マーカー	マーカー
染色プロトコール	染色プロトコール
調製	調製プロトコール(該当する場合)
加熱処理	加熱処理プロトコール(該当する場合)
酵素	酵素処理プロトコール(該当する場合)
分注量	分注する試薬量(6.5.8分注量とスライド上の組織の位置を参照)
組織の種類	テスト組織、陽性 コントロール、陰性 コントロール

連続二重染色スライドでは、スライドIDで分類されたマーカー、プロトコール、分注量、および組織タイプカラムに最大2列表示されます。

レポートウィンドウおよび印刷オプションの詳細については、3.7レポートを参照してください。

6.8 スライドとケースの臨時作成

このセクションは、BOND-PRIME 処理 モジュールには適用されません。

デフォルトでは、BOND システムでは、スライドトレイが処理 モデュールにロードされ、スライド画像が取得されると、新しいケースとスライドが作成されるように設定されています。

以下の最初のセクションでは、スライドとケースの「臨時」作成について説明します。次のセクションでは、それ以外のワークフローのオプション設定を説明します。

- 6.8.1 画像取得後の新しいケースおよび / またはスライドの作成
- 6.8.2 オンボードスライドの識別 オプション

6.8.1 画像取得後の新しいケースおよび / またはスライドの作成

以下の手順に従い、スライドをロードし画像を取り込んだ後に、ケースとスライド情報を追加します(5.1.5.2 オンボードスライドの手動識別で説明した補助 ID の手順と似ていますが、ここでは新しいケースとスライドの作成が含まれます)。

1 通常の方法で処理モデュールにスライドをロードします。

BONDソフトウェアでケースやスライドを作成したり、ラベルを印刷する必要はありません。ここでは手書きまたは第三者のラベルを使用します。

システムはスライドを認識できずラベルの画像を表示します。

図 6-7:自動識別されていないスライド

特定の処理モデュールでラベル画像が表示されない場合は、スライドのラベル画像を取り込まない設定されている可能性があります。カスタマーサポートに連絡して、この設定をその処理モデュール用に再設定するよう手配してください。

- 2 スライドの識別ダイアログを表示するには、以下のどちらかを実施してください。
 - a スライド画像 をダブルクリックします。
 - b 画像を右クリックして、サブメニューから「手動選択」を選択します。

「スライドの識別」ダイアログが、新しいケースおよび新しいスライドボタンが有効になった状態で表示されます(図 6-8 の項目 1 と2)。

スライドの識別 ケースリスト スライドトレイ: 2 スライド ケース ID 患者 *KAPPApb 3 LS0012 - 45216 Shady, Albert 57. 1.251. 20130416-IHC *KAPPApb . Jan. CS104 - 254862 CS145 - 254789 1A Olive Yew CS150 - 254719 Liz Erd CS154 - 255789 Ray O'Sun CS205 - 255792 CS211 - 256001 ケースレポート | 新しいケース | 新しいスライト

図 6-8: 「スライドの識別」 ダイアログとスライドステータス画面

(一部の施設では、新しいケース、または、新しいケースと新しいスライドボタンの両方が解除されます。6.8.2 オンボードスライドの識別 オプションを参照)

有効なスライドは、スライドトレイで強調表示されます(3)。

ダイアログには ラベルの拡大 画像 (4) が含まれ、容易にスライドを識別 することが可能です。 画像をさらに拡大するには、右ペインのスライドにカーソルを置きます。

左ペインには、現在のスライドを含むケースが全て表示されます。デフォルト設定では、ラベルが印刷されているスライドの入ったケースのみが表示されます(ラベルが印刷されていないスライドの入ったケースを含めて表示させることもできます。6.8.2.2 外部 スライドラベルを参照してください)。

中央のペインには、左ペインで選択したケースについて設定されたスライドが表示されます。ただしスライドは、処理モデュールで認識されたスライドと照合されていません。デフォルト設定では、ラベルが印刷されているスライドのみが表示されますが、ケースに対して設定された全スライドを表示させることもできます。

正しいラベルイメージを選択していることを確認します。間違って選択すると、スライドに影響が出る可能性があるためです。

- 3 新しいケースを作成するには、**新しいケース**をクリックします(項目1)。 選択されたスライドについて、新しいケースを通常の方法で作成します(6.3.3 ケースの追加を参照)。
- 4 **ケースを追加** ダイアログで**OK**をクリックし、**スライドの識別** ダイアログのケースリストで新 しいケースを選択します。
- 5 作成したばかりのケースに対して新しいスライドを作成するには、**新しいスライド**をクリックします(項目2)。

「スライドを追加」ダイアログが開きます。

- 6 ソフトウェアで、通常の方法で、右ペインで選択した実スライドに新しいスライドを作成します(6.5.2 スライドの作成を参照)。
 - 追加 されると、新しいスライドがダイアログの中央ペインに表示されます(新しいケースは、左のケースリストで選択されたままになっています)。
- 7 右ペインで正しいラベル画像が選択されていることを確認し、**挿入**をクリックして、中央ペインの新しいスライドと照合します。
 - スライドが中央ペインから削除され、右ペインのラベル画像の代わりに、スライドのシステム情報(作成したばかりの新しいスライド用に入力したもの)が表示されます。
 - スライドが一致しない場合、右ペインからスライドを選択して**削除**を押せば、この手順を無効にできます。
- 8 これで、スライドを通常の方法で処理することができます。
 スライドトレイの残りのスライドについても、新しいケースとスライドの作成手順を繰り返します。

6.8.2 オンボードスライドの識別オプション

管理者の設定によって、スライドの識別ダイアログのオプションを有効または無効にして、各種のスライドの識別ワークフローを可能または強制にすることができます。

6.8.2.1 「スライドとケースの臨時作成」の制限または禁止

BOND では、デフォルトで、BOND ソフトウェア以外で作成した(つまり、LIS からインポートした) スライドをロードでき、さらに、スライドを画像化した後、**スライドの識別**ダイアログを使用して、このソフトウェアでケースやスライドを作成できるように設定されています。もしくは、この方法による新しいケースの作成を禁止したり(ただし、既存のケースで新しいスライドを作成することはできる)、スライドのロード後にスライド(およびケース)の作成を完全に禁止したりするようにシステムを設定することもできます。設定によっては、**スライドの識別**ダイアログで新しいケースボタンまたは新しいケースと新しいスライドの両方のボタンが無効になります(図 6-8を参照)。

管理者 クライアント**設定**画面のスライドとケースの臨時作成オプションを制限します(10.5.2 ケースとスライドの設定を参照)。

6.8.2.2 外部 スライドラベル

BOND システムで、スライドラベルを処理 する前に BOND システム上で全てのラベルを印刷 する必要であるか 否か、設定 することができます。LIS スライドと非LIS スライドに別々の設定が行えます。

非LIS スライドのデフォルト設定では、BOND システムによる印刷が必要であると設定されています。これは、BOND システムで印刷されたラベルのない実スライドは、(ID が同じであっても) ソフトウェアで作成されたスライドと自動的にマッチングされないことを意味しています。さらに、スライドの識別ダイアログではBOND システムで印刷されたスライドしか表示されないため、そのダイアログを使用して手動でスライドをマッチングさせることもできません。従って、ラベルを手書きにしたり外部機器で印刷しているBOND - LIS が統合されていない施設では、このオプションをオフにしなければなりません。こうすると、BOND システムで印刷されているか否かにかかわらず、システム内で作成されるスライドは、全て、処理モデュールにロードされるスライドとマッチングされます。

BOND によってラベルを印刷 されていないスライドの処理を有効にするには、管理者 クライアント**設定**画面の BOND の強制印刷を選択解除します(10.5.2 ケースとスライドの設定を参照)。(「スライドとケースの臨時作成」のみを許可する場合には、BOND の強制印刷の選択を解除する必要はありません。6.8.2.1「スライドと ケースの臨時作成」の制限または禁止を参照)。

BOND の強制印刷オプションを非選択した後に作成したスライドは、ラベルを印刷する必要はありませんが、このオプションを非選択する前に作成したスライドは、そのラベルを印刷するまで、処理に使用することはできません。

LIS スライドの場合、デフォルトの設定では、BOND システムによる印刷は必要ありません。これは、LIS で印刷されたラベルのあるスライドは、(LIS からインポートされた) BOND ソフトウェアのスライドと自動的にマッチングできることを意味しています。また、(スライドラベルが不明瞭などの原因で)自動マッチングができない場合でも、スライドの識別ダイアログを使用して手動でマッチングさせることができます。ただし、ワークフローにLIS で作成されたスライドが入っているが、強制的にラベルをBOND システムで印刷させたい場合には、このオプションをオンにしてください(管理者のLIS 画面でBONDでLIS の印刷を強制するを選択すること。10.2 LIS を参照)。

6.9 スライドの互換性

このセクションは、BOND-PRIME 処理モジュールには適用されません。

各処理の手順を、トレイ内の全スライドに最適な結果を確実に得ることができるように同期化するために、スライドトレイがロードされると、スライドの互換性がBONDソフトウェアによって確認されます。互換性のないスライドはシステム状態画面に表示されますので、処理を開始する前に取り外すか交換してください(5.1.4.4 互換性のないスライド設定の解決を参照).

互換性のある標準スライドとは、

- 同じ分注量を持つスライドであること。
- すべてのシングル染色またはすべての並行二重染色またはすべての連続二重染色、
- スライド追加プロセスで選択した場合は、同じUPIを持つ
- 同じ調製プロトコールを使用すること。
- 同じ染色プロトコールを使用する
- 互換性のある前処理プロトコール、および/またはISHディネーチャープロトコールとハイブリダイゼーションプロトコールを使用すること。

プロトコールの互換性の基準については、下の6.9.1プロトコールの互換性を参照してください。

スライド設定レポート(6.7 スライド設定のサマリーレポート)を利用すると、各トレイに互換性のあるスライドがロードされているか否かを確認できます。

6.9.1 プロトコールの互換性

染色プロトコールとプリパレーションプロトコールは、厳密な互換性の制約があります。一方、加熱による前処理プロトコールと酵素の前処理プロトコール、およびin-situ ハイブリダイゼーションプロトコールとディネーチャープロトコールは若干の余裕があります。これらのプロトコールの互換性は、処理モジュールのタイプ(BOND-III またはBOND-MAX)、プロトコールのステップの数と時間、およびステップ中の処理モジュールの状態によって異なります。プロトコールは、これらの要因が全て同じとなるか、または染色のクオリティに影響しない程度に異なる場合であれば、互換性があります。

全てのプロトコールタイプにおける互換性の基準は、以下のとおりです。

6.9.1.1 染色プロトコール

各スライドで同じ染色プロトコールを使用する必要があります。連続二重染色処理では、同じ2つの染色プロトコールを同じ順序で使用する必要があります。

シングル染色処理でIHC スライドとISH スライドを混合することはできませんが、連続二重染色処理では組み合わせて使用できます。

6.9.1.2 調製プロトコール

「脱パラフィン」、および「ベーキング&脱パラフィン」のプロトコールについては、

- トレイ内の全スライドで同じプロトコールを使用する必要があります。
- 調製プロトコールのスライドは、調製プロトコールのないスライドと混在できません。

6.9.1.3 前処理プロトコール

熱処理のみ、酵素処理のみ、熱処理と酵素処理、前処理なしのスライドは、同時に処理可能です。現在前処理のないスライドは、他のスライドが処理中は保水されています(熱処理は、常に酵素処理の前に実施されれます)。

同様に、ISHディネーチャーおよびハイブリダイゼーションの有無を問わず、あらゆるスライドの組み合わせが可能です。

以下のセクションでは、処理の種類が同じプロトコールである前処理の互換性に関する条件を示します。

加熱処理

- 1 加熱前処理のプロトコールの互換性の基準は、以下のとおりです:
 - ステップ数 が同じであること。
 - 各ステップでの反応時間が同じであること(ただし加熱ステップを除く)。 同時に実行される加熱処理では、全スライドで、そのステップに設定された最長時間が適用されます。短時間設定のスライドは、それに対して設定された時間だけ加熱され、その後スライドヒーターの電源がオフになります。
- 2 Epitope Retrieval Solution 1および2を用いたプロトコールは同時に処理できます。
- 3 加熱処理を行うスライドと、加熱処理を行わないスライドは同じトレイで処理できます。前処理を行わないスライドは、他のスライドの処理中に室温でEpitope Retrieval Solutionにより保湿されます。

酵素処理

- 1 酵素処理のプロトコールの互換性の基準は、以下のとおりです:
 - ステップ数が同じであること。
 - 各ステップで反応時間が同じであること。
- 2 1回の処理に2種類の酵素まで使用できます。
- 3 酵素処理を行うスライドは、酵素処理を行わないスライドと同じトレイで処理できます。前処理を行わないスライドは、他のスライドの処理中に室温で保湿されます。

6.9.1.4 ISHディネーチャー

ディネーチャープロトコールは、反応時間が同じであれば互換性があります。反応温度が異なっても可能です。

6.9.1.5 ISH ハイブリダイゼーション

ハイブリダイゼーションプロトコールは、反応時間が同じであれば互換性があります。反応温度が異なっても可能です。

プロトコール(BOND コントローラーで)

BOND ソフトウェアのプロトコールは、組織サンプルを染色するための一連のステップから構成されています。

BOND システムには、定義済みの Leica Biosystems プロトコールが、セットされており、これらは編集、削除できません。あらかじめ定義されたプロトコールとは、Leica Biosystems が検証したプロトコールです。ただし、あらかじめ定義された既存のプロトコールをコピーして編集し、カスタマイズしたプロトコールを作成することもできます。

警告:カスタマイズしたプロトコールはすべて、現地の施設の手順や要件に従って検証する必要があります。プロトコールを作成して保存できたとしても、目的とする作業に適さない場合が考えられます。

本章の構成は以下のとおりです。

- 7.1 プロトコールの種類
- 7.2 プロトコール設定画面
- 7.3 新規プロトコールの作成
- 7.4 ユーザープロトコールの編集
- 7.5 プロトコールレポート
- 7.6 あらかじめ定義されたプロトコール

7.1 プロトコールの種類

BOND システムの全てのプロトコールには、実行しようとする固有の機能に応じて様々な「種類」があります。例えば、前染色 HIER プロトコールとIHC 連続二重染色プロトコールはタイプが異なります。

- プロトコールの種類は変更できません。
- 新しいプロトコールを作成するには、新しいプロトコールと同じ種類の既存のプロトコールをコピーする必要があります。コピーした後で、必要に応じてプロトコールのステップを編集することができます。

概して、どの処理でも、また、異なるプロトコールタイプでも、スライドの調整し、マーカーのアプライし、発色させることが実行されます。これらのシーケンスとプロトコールでは、通常、二重染色の修正が必要になります。

- 7.1.1 染色モード
- 7.1.2 プロトコールシーケンス

7.1.1 染色モード

BOND システムには、3つの染色モードがあります。

- シングル−1種類のマーカーと色原体を1枚のスライドに適用します。
- 並行二重 2 種類の異なるマーカーと色原体を1枚のスライドに適用します。マーカーは「カクテル」 に混じり合いシングル染色プロトコールを使用して適用されます。
- 連続二重 2 種類の異なるマーカーと色原体を1枚のスライドに適用します。マーカーは個別の染色プロトコールで順次適用されます。

各染色プロトコールには、二重またはシングル染色に関する役割を指定する「染色方法」があります。 シングル染色には「シングル」という1つの染色方法のみがあります。

並行二重染色の染色方法は「並行二重」のみです。

あらかじめ定義済みの連続二重染色プロトコールには染色方法「シングル」があり、変更できません。ただし、これらのあらかじめ定義されたプロトコールをコピーして、要件に合わせて染色方法を修正することができます。

連続二重染色には、以下の染色方法があります。

- 最初 連続二重染色の最初のプロトコールに使用されます
- **最終** 連続二重染色の最後プロトコールとして使用されます

例えば、ユーザー作成のプロトコールはシングルプロトコールとして設定できます。あるいは、予備プロトコールおよび/または最終プロトコールとして使用するように設定することもできます。必ずプロトコール全体を調べて、全てのステップが全ての染色方法に適合していることを確認します(シングルプロトコールには核染色があり、予備プロトコールには不要であるなど)。

プロトコールの種類と染色法を以下の表に示します:

	タイプ	染色法	内容
染色	IHC 染色 - シングル染 色	シングル	シングル染色でシングル抗体の検出用のプロトコール
	IHC 染色 - 連続二重 染色	シングル	シングル染色でシングル抗体の検出用のプロトコール
		予備	連続二重染色で最初の抗体を検出するためのプロトコール
		最終	連続二重染色で最後の抗体を検出するためのプロトコール
	IHC染色	並行二重	並行二重染色でカクテル抗体を検出
	並行二重染色		するためのプロトコール
	ISH 検出 - シングル	シングル	シングル染色でシングルプローブの検出用のプロトコール
	ISH 検出 - 連続二重 染色	シングル	シングル染色でシングルプローブの検出用のプロトコール
		予備	連続二重染色で最初のプローブを検 出するためのプロトコール
		最終	連続二重染色で最後のプローブを検 出するためのプロトコール
	ISH検出 並行二重染色	並行二重	並行二重染色でカクテルプローブを検出するためのプロトコール(現在このカテゴリーにはプロトコールはありません)
前染色	調製	該当なし	スライドの脱 パラフィンを実施 する、またはスライドのベーキング (組織の接着) および組織の脱パラフィン
	加熱処理	該当なし	加熱による抗原賦活化
	酵素処理	該当なし	酵素による抗原賦活化
	ISHディネーチャー	該当なし	DNA ISHディネーチャープロトコール
	ISH ハイブリダイゼー ション	該当なし	ISHのハイブリダイゼーションプロトコール

7.1.2 プロトコールシーケンス

通常、各スライドで、種類の異なるプロトコールシーケンスが実行されます。これには、各組織やマーカーおよび一般施設手順に適した、調製、抗原賦活化、ディネーチャー、ハイブリダイゼーション、染色プロトコールが含まれます。これらのシーケンスは、スライド作成ごとに設定できますが(6.5.2 スライドの作成を参照)、BONDソフトウェアでは、特別なプロトコールが必要がない場合は、デフォルトのプロトコールを用いることで、よりスピーディーに行うことも可能です。

- デフォルトの調製プロトコール (例、*Dewax) は、管理者のBONDシステム全体に設定されます (10.5.2 ケースとスライドの設定を参照)。
- それ以外のプロトコールのデフォルト設定は、**試薬の設定**画面から、各マーカーに対して設定されます (8.2.1 試薬の追加または編集を参照)。

適切なデフォルトのプロトコールをセットすることにより、各スライドの準備時間が最小限に抑えられます。必要に応じて、スライド作成時に、各スライドのプロトコールを変更することができます。

シーケンス内でのプロトコールの順序はBONDソフトウェアで自動的に設定されます(下表を参照)。プローブの分注 および取り外しは含まれません。これらは自動的に行われます。

順序	プロトコール (またはプローブ)	IHC または ISH	コメント
1	調製	両方	オプションとして、薬品調製中の装置内パラフィン除去。
2	加熱処理 (加熱処理)	両方	大部分のスライドでは、加熱処理または酵素処理プロトコールが実行されます。ときによって、両方とも実行されることや、どちらも実行されないこ
3	EIER (酵素による抗原賦活化)	両方	ともあります。
4	プローブの使用	ISH	ユーザーによって選択されたものではな (BONDが自動的に適切なプロトコールをここに設定します。
5	ディネーチャー	ISH	DNAプローブのディネーチャープロトコール。 DNAプローブでは常にディネーチャーを使用してください。
6	ハイブリダイゼーション	ISH	ISH の必須 ハイブリダイゼーションプロトコール、またはなし。
7	プローブの取り外し	ISH	ユーザーによって選択されたものではな 母ONDが自動的に適切なプロトコールをここに設定します。

順序	プロトコール (またはプローブ)	IHC ま たは ISH	コメント
8	染色	両方	プロトコールに必要な、発色試薬およびその他試薬。IHC一次抗体はこのプロトコールで分注されます。

プロトコールのシークエンスはあらかじめ定義されたものがありますが、それらを選んでカスタマイズすることも可能です。(新規プロトコールの作成: 7.3章を参照)。

7.1.2.1 連続二重染色のプロトコールとプロトコールシーケンス

連続二重染色では基本的に2つの染色プロトコールシーケンスを順次処理します。これらはIHC プロトコールおよび/またはISH プロトコールを組み合わせることができます。通常、いつでもではありませんが、第一マーカーは BOND Polymer Refine Detection System に DAB 色原体を使用し、第二マーカーは BOND Polymer Refine Red Detection System に Fast Red 色原体を使用します。

第二マーカーに使用するプロトコールはステップを省略したり、必要に応じてステップを修正してください(プロトコールは適切な染色ができる方法に修正する必要があります - を参照)。第二マーカーに使用するプロトコールはステップを省略したり、必要に応じてステップを修正してください(プロトコールは適切な染色ができる方法に修正する必要があります - 上の7.1.1 染色モードを参照)。連続二重染色のプロトコールとプロトコールシーケンスの変更に関するヒントを以下に示します。いずれにせよ、結果を確認するにはテストしてみる必要があります。

- 調製プロトコール(Dewax など) は第一マーカーのステップでのみ処理できます。ソフトウェアでは、第二 染色プロトコールのステップで調製プロトコールを選択することはできません。
- 抗原賦活化は、第一マーカーを適用する前に、1回だけ必要になります。第二マーカーに追加の賦活化が必要になる場合は、時間を短くするか温度を下げます。
- プローブを2つ使用する二重染色の場合、ディネーチャーはしばしば、第一マーカーを適用する前に1回だけ必要になります。第二マーカーに追加のディネーチャーが必要になる場合、通常は時間を短くします。
- 染色プロトコールでは、一般に対比染色(ヘマトキシリンなど)セグメントを第一プロトコールの末尾から取り除いた場合によい結果が得られます。これは第二プロトコールに含めます。

7.2 プロトコール設定画面

プロトコールの作業を実行するには、ファンクションバー上の**プロトコール設定**アイコン をクリックしてください。

プロトコールの設定 TH_B3 -Ľ-プロトコール名 プロトコールの種類 *IHC Protocol G IHC染色 Bond Polymer AP Red IHC protocol 2023/02/05 Leica TH_Max *IHC Protocol H IHC染色 Bond Oracle IHC System protocol Leica -Ľ-*IHC Protocol J IHC染色 BOND Polymer AP RED System for IHC Leica 2023/02/05 *IHC Protocol K IHC染色 ChromoPlex 1 Dual IHC protocol Leica 2023/02/05 *IHC Protocol K - 50 Test IHC染色 ChromoPlex 1 Dual IHC protocol Leica 2023/02/05 *IHC Protocol O IHC幼色 BOND Polymer DAB System with altered Px on IHC Leica 2023/02/05 *FISH Protocol A ISH検出 FISH System protocol - 30 Test Leica 2023/02/05 2023/02/05 *FISH Protocol C ISH検出 *FISH Protocol D ISH検出 *ISH Protocol A ISH検出 BOND Polymer RNA ISH Protoco *ISH Protocol B ISH検出 BOND Polymer DNA ISH Protocol 2023/02/05 プロトコール・グループ: プロトコールの種類: プロトコールの作成者: 推奨ステータス: 染色法: 全セクション 全セクション ▼ 優先

図 7-1:プロトコール設定画面

プロトコール設定画面には、各プロトコールと一部の基本情報の一覧表が表示されます。あらかじめ定義されたプロトコールには、名前と略名の最初の文字にアスタリスク(*)が付いています。

この表からプロトコールを選択して、コピーや編集、レポート作成などの操作を行うことができます。この操作をするには、表の上のボタンを押すか、右クリックメニューを使用します。

表の下のフィルターから、表示したいプロトコールの種類を設定できます。「染色プロトコール」または「調製プロトコール」を選択すると、さらに範囲を縮めて特定のプロトコールの種類を表示できます(7.1 プロトコールの種類を参照)。また染色法、プロトコールの作成者、および推奨ステータスで検索できます。

プロトコールのリストの詳細は、以下のとおりです:

タイトル	内容	オプション
プロトコール名	プロトコールのフルネーム	定義済みの(Leica Biosystems) プロトコールには、最初にアスタリスク(*)が付きます
プロトコールの 種類	プロトコールの機能を説明	7.1 プロトコールの種類を参照。
内容	プロトコールの機能と用途を説明	
更新者	プロトコールの作成者または直近の更新者を表示	Leica は、定義済みのLeica Biosystemsプロト コールを示しています
更新日	プロトコールの作成日、または直近の更新日	
優先-研究者 の優先状況 (スタディを作 成する際に	プロトコールの推奨ステータスを表示	チェックマーク付き-優先プロトコールです。 試薬の追加 およびスライドの追加ダイアログで選択できます。
は、優先研究者のみがドロップダウンリストに表示されます).		チェックマークなし-優先プロトコールではありません。 試薬の追加 およびスライドの追加ダイアログで選択できません。

7.2.1 プロトコールの詳細

プロトコール設定画面にリストされているプロトコールを開いて表示または編集するには、ダブルクリックします(または強調表示してから、**開く**をクリック)。プロトコールの詳細を記載したプロトコールのプロパティの編集ダイアログが表示されます。

定義済みのLeica Biosystems プロトコールでは、優先設定のみが変更可能です。 ただしユーザープロトコールでは、その他の設定も変更できます。

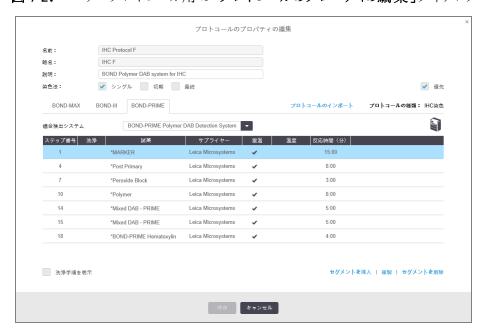


図 7-2: ユーザープロトコール用の「プロトコールのプロパティの編集」ダイアログ

ダイアログには、処理 モジュールタイプ(BOND-MAX、BOND-III、および BOND-PRIME) ごとにタブが表示されます。処理 モジュールが作動していない場合は、BOND-MAXおよびBOND-IIIのみが表示されます。タブを表示するには、BOND-PRIME 処理 モジュールを少なくとも 1 つ作動させる必要があります。

さらに、新しいプロトコールを作成しているときやユーザープロトコールを編集しているときにはプロトコールのインポートボタンが表示されます。詳細については。7.4.4複数の処理モジュールタイプとプロトコールバージョンを参照してください。

表の下の**洗浄手順を表示する**を選択すると、すべてのプロトコール手順 (洗浄手順を含む)が表示されます。選択を解除すると、洗浄手順が非表示になります。

「プロトコールのプロパティの編集」ダイアログには、以下のプロトコール情報が表示されます。

名前	プロトコールのフルネーム
略名	スライドラベルなどに使用するプロトコールの略名
内容	プロトコールに関する簡単な説明
染色法	(以下を参照)

プロトコールの種類	プロトコールの種類に応じて表示される機能が異なり、またそれによって使用可能なステップと試薬が決定されます。
適合検出システム	このプロトコールに適した適合検出システム。
	これは前処理プロトコールには適用されません。

このダイアログの下表のプロトコール情報には、各プロトコールのステップとそのプロパティが記載されています(図 7-2 を参照)。ユーザープロトコールの編集可能なステップはこの表で編集できます(7.4 ユーザープロトコールの編集を参照)。

表に表示される詳細は、以下のとおりです。

項目	内容
ステップ番号	プロトコールのステップの順序が表示されます。
洗浄	ステップが洗浄ステップである場合にチェックを入れます。
試薬	このステップで使用する試薬。
サプライヤー	試薬のサプライヤーが表示されます。これは編集できません。
室温	ステップが室温である場合にチェックを入れます。
温度	室温と異なる場合、選択したスライドの温度(前処理プロトコールのみ)。
反応時間(分)	試薬がスライドに残留する最短時間が表示されます。

染色法

染色プロトコールには「染色法」のセクションが含まれます。シングル染色および連続二重染色プロトコールには、以下のオプションがあります。

- **シングル** シングル染色のプロトコール。
- 予備 連続二重染色の最初のプロトコール
- 最終 連続二重染色の最後のプロトコール

並行二重染色プロトコールでは、染色法に並行二重オプションのみがあります。

染色法の詳細については、7.1.1染色モードを参照してください。

推奨ステータス

試薬の追加 およびスライドの追加ダイアログの選択に使用できるのは優先プロトコールのみなので、使用 するプロトコールを優先プロトコールにする必要 があります。優先のチェックボックスを選択し、使用しないものは優先をはずします。

7.3 新規プロトコールの作成

新規プロトコールを作成するには、既存のユーザーまたは Leica Biosystems のプロトコールをコピーします。プロトコールをコピーしても、元のプロトコールは残っており、変更されません。新しい IHC プロトコールを作成する場合は、既存の IHC プロトコールをコピーします。また加熱処理プロトコールの場合は、既存の加熱処理プロトコールをコピーします(その他のプロトコールも同様)。

プロトコールをコピーするには、プロトコールをプロトコール設定画面のリストから選択し、コピーボタンをクリックします。選択したプロトコールのコピーが「新しいプロトコールのプロパティ」ダイアログに表示され、編集が可能となります。

新規プロトコールには7.4.3 プロトコールの規則の全規則を遵守した固有の名前と略名が必要です。新規プロトコールには、プロトコールの名前と略名以外の変更を加える必要はありません。もちろん必要に応じてプロトコールのあらゆるアスペクトを変更することもできます(下の7.4 ユーザープロトコールの編集を参照)。

BOND-IIIまたはBOND-MAXの編集が終わったら、**保存**をクリックしてください。プロトコールが規則に適合していたら、「ユーザーの責任」においてプロトコール作成を確認するためのメッセージが表示されます。これは、Leica Biosystems は、ユーザーが作成または編集したプロトコールの結果について予測できないためです。継続することに同意すると、プロトコールの変更が保存されます。

BOND-PRIMEの場合は、BOND-PRIME特有のプロトコールルールを参照してください。

すべてのプロトコールは、使用前に施設で検証する必要があります。

7.4 ユーザープロトコールの編集

ユーザープロトコール (ただし Leica Biosystems プロトコールを除 分の編集は、プロトコールのプロパティの編集 ダイアログを用いて行います。プロトコールを編集するには、プロトコール設定画面のリストからプロトコールを 選択して、開くをクリックします(またはプロトコールをダブルクリックします)。もしくは同種の既存のプロトコールをコピーして、それを編集しても新しいプロトコールを設定できます(7.3 新規プロトコールの作成を参照)。

染色プロトコールでは、試薬のステップを追加または削除して、新しい試薬や反応時間を設定できます。また洗浄ステップを追加または削除できます。

*ベーキング&脱パラフィンプロトコールの場合は、ベーキングステップの時間と温度のみ変更することができます。他の前染色プロトコール(HIER、酵素)の場合、一部のステップの温度と反応時間を変更できます。編集可能な内容については、7.4.3プロトコールの規則を参照してください。

新しい試薬の分注の後に洗浄ステップが必要なため、染色プロトコールに新しい試薬のステップを加えると、試薬のステップと3つの洗浄ステップ(BOND-III およびBOND-MAX)または2つの洗浄ステップ(BOND-PRIME)で構成される、プロトコールの「セグメント」が自動的に追加されます。

プロトコールを編集するとき、変更したステップや新しいステップに必要な情報がすべて含まれている場合、緑色のバーが左側に表示されます。このようなステップに追加情報が必要な場合、赤色のバーが表示されます。

編集中、プロトコールのステップを全て表示することも、洗浄ステップを非表示にすることもできます(表の下にある**洗浄ステップの表示**オプションボタンを使用する)。

プロトコールを作成して保存できたとしても、目的とする作業に適さない場合が考えられます。ユーザーの責任において、自身が作成したプロトコールの試験および検証を行ってください。

このセクションには次のトピックが記載されています。

- 7.4.1 プロトコールステップの編集
- 7.4.2 プロトコールのステップの追加と削除
- 7.4.3 プロトコールの規則
- 7.4.4 複数の処理 モジュールタイプとプロトコールバージョン
- 7.4.5 プロトコールの削除

7.4.1 プロトコールステップの編集

「新しいプロトコールのプロパティ」のダイアログで新しいプロトコールを設定するには、以下の指示に従ってください。または「プロトコールのプロパティの編集」ダイアログで既存のプロパティを編集することもできます。作成されたプロトコールが有効であることを確認するには、7.4.3 プロトコールの規則を参照してください。

プロトコールを保存するたびに、システムにそのコピーが保存されます。プロトコールレポートを作成する場合 (7.5 プロトコールレポートを参照)、プロトコールが有効になった日付を選択する必要があります。過剰なプロトコールを持つことを避けるために、構成が完成したもののみを保存することをお奨めいたします。

- 1 新しいプロトコール名と略名を入力します。
- 2 必要に応じて、プロトコールの説明を入力します。
- 3 染色プロトコールの染色法を設定します(7.1.1 染色モードを参照)。
- 4 プロトコールの推奨ステータスを設定します(推奨ステータスを参照)。
- 5 染色プロトコールの場合、**適合検出システム**ドロップダウンリストから、このプロトコールで使用する検出システムを選択します。
- 6 プロトコールのステップを追加または削除します(7.4.2 プロトコールのステップの追加と削除を参照)。プロトコールに必要なステップがセットできるまで繰り返します。
- 7 BOND-MAXおよびBOND-IIIの場合のみ、新しいプロトコールや既存のプロトコールのステップで編集可能なパラメータを変更します。まず、変更したいパラメータをダブルクリックします。
 - a BOND-MAXおよびBOND-IIIの場合、ドロップダウンリストから試薬を選択します。
 - **b** BOND-PRIMEの場合、7.4.2.1 試薬セグメントの規則を参照してください。
 - c 注意: IHC プロトコールにおいて一次抗体を使用するステップについては、「*MARKER」を選択してください。洗浄ステップには、*BOND洗浄液または*脱イオン水のみを使用できます。
 - d 反応時間(分・秒、mm:ss)を設定します。これは、次のステップに進むまでの最低時間を示します。反応時間の制限については、7.4.3プロトコールの規則の.を参照してください。
 - e 通常:
 - BOND-MAXでは、BOND-IIIおよびLeica Biosystemsの試薬ステップの反応時間は30分以内をお勧めします。より長い時間が必要な場合は、同じ試薬を分注するための繰り返しステップを作成します(7.4.2.2 複製試薬ステップを参照)。これはBOND-PRIME プロトコールには適用されません。
 - BOND-PRIMEでは、過熱処理ステップの場合、Leica Biosystemsの試薬ステップの反応時間は20分以内をお勧めします。最短反応時間については、BOND-PRIME特有のプロトコールルールを参照してください。
 - f 通常 Leica Biosystems としては、試薬ステップの反応時間は30分以内をお勧めいたします。より長い時間が必要な場合は、同じ試薬を分注するための繰り返しステップを作成します(7.4.2.2複製試薬ステップを参照)。
 - a 通常Leica Biosystemsとしては、試薬ステップの反応時間は30分以内をお勧めいたします。
 - h 温度設定をします(前処理プロトコールのステップの一部)。

室温ではない温度を設定したい場合、まず、**室温**パラメータのチェックを外します。次に、空の**温 度**パラメータを選択し、温度(摂氏)を整数で入力します。

温度を室温に変更したい場合、室温パラメータを選択してチェックを入れます。

許容できる温度範囲については、7.4.3プロトコールの規則の.を参照してください。

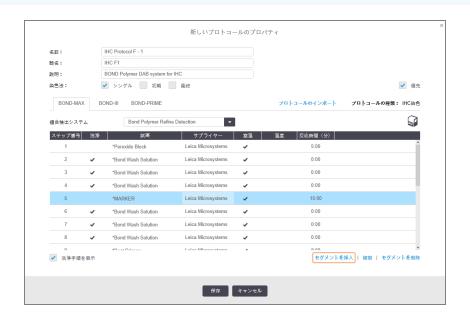
i 他のステップをクリックして、変更されたパラメータを確認します。

7.4.2 プロトコールのステップの追加と削除

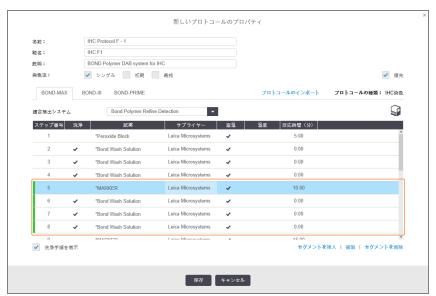
ユーザー IHC および ISH プロトコールではステップを追加 または削除 できますが、前処理プロトコールではできません。プロトコールステップ表の下にあるボタンを使うとステップが追加 または削除 できます。ボタンはコンテクストに敏感で、使用の可否や機能は、選択されたステップに依存します。

詳細については、次のセクションを参照してください。

- 7.4.2.1 試薬セグメント
- 7.4.2.2 複製試薬ステップ
- 7.4.2.3 洗浄 ステップ


7.4.2.1 試薬セグメント

新しい試薬 セグメントを追加 するには(1つの試薬 ステップと3つの必須の洗浄 ステップ(BOND-III および BOND-MAX) または2つの必須の洗浄 ステップ(BOND-PRIME)):


1 試薬を選択し、**セグメントの挿入**をクリックします。新しいセグメントが当該試薬の上に挿入されます。

最後の試薬を選択すると、試薬の下に、新しいセグメントを挿入することができます。

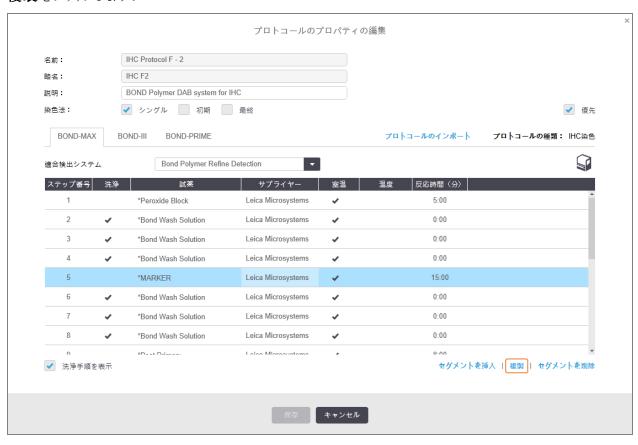
新しいセグメントが(試薬と洗浄ステップと一緒に)リストに表示されます。洗浄ステップには緑色のバーが表示され、保存されていたプロトコールから変更があったことを示します。試薬ステップには赤色のバーが表示され、そのステップで試薬を選択する必要があることを示します。

- 2 空の**試薬**パラメータをクリックして、ドロップダウンリストから必要な試薬を選択します。 必要に応じて、新しい試薬と洗浄ステップのその他のパラメータを編集します。
- 3 保存をクリックします。確認ダイアログが表示されます。

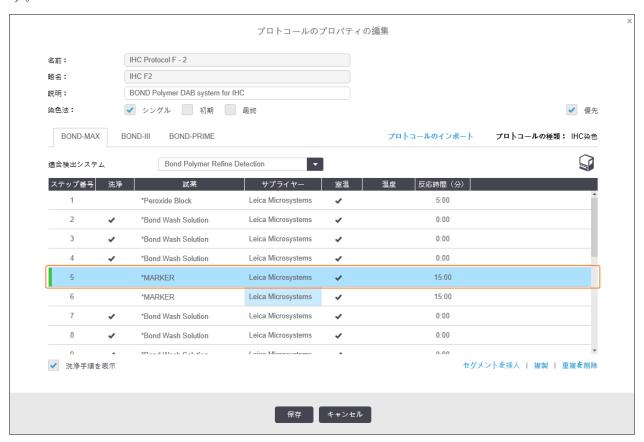
4 はいをクリックします。

セグメントを削除するには、試薬を選択してセ**グメントを削除**をクリックします。 試薬が重複しているセグメントを削除するには、まず、重複を削除してください。

BOND-PRIMEで最適な染色結果を得るには:


- 発色セグメントを削除しないでください
- 試薬セグメントの名前を変更しないでください
- ポリマーの後にパーオキシダーゼブロックを配列しないでください。

7.4.2.2 複製試薬ステップ


複製ステップとは、同一試薬を2回以上相互に連続使用する方法で、その間に洗浄ステップは入りません。

1 手順リストから、複製する試薬手順を選択してください。

複製をクリックします。

2 現在のステップと同一のパラメータを持つ新しいステップが、現在のステップの上に追加されます。 新しいステップには緑色のバーが表示され、保存されていたプロトコールから変更があったことを示しま す。

3 必要に応じて、新しいステップで反応時間を編集します。

複製ステップの試薬の種類を変更した場合には、シーケンス内のその他の試薬ステップも変更されます(複製ステップでは同じ試薬を使用しなければならないため)。

4 保存をクリックします。

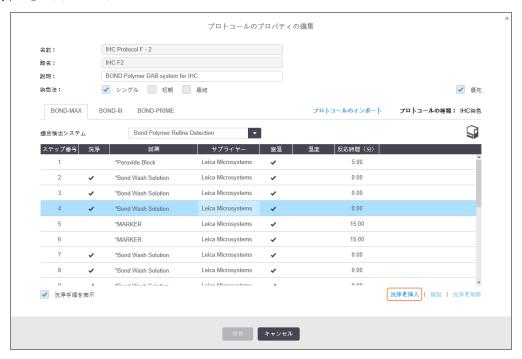
確認ウィンドウが表示されます。

5 はいをクリックします。

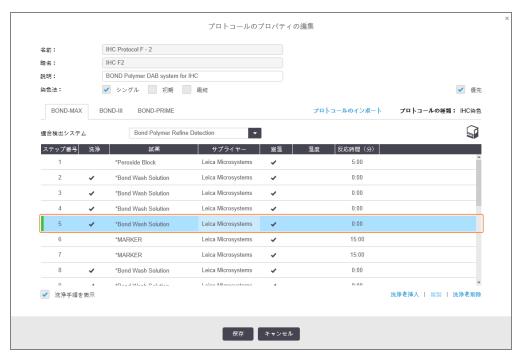
複製ステップを削除するには、それを選択し、重複を削除をクリックします。

7.4.2.3 洗浄ステップ

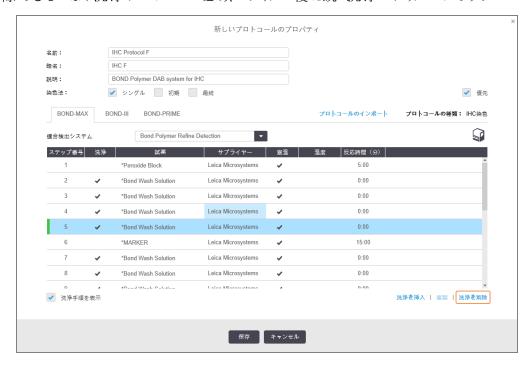
洗浄ステップを追加すると、スライド上の洗浄特性が変化し、染色に影響を与える可能性があります。新しいプロトコールを使用する前に、必ず染色性を検証してください。


発色またはヘマトキシリンステップの前後に脱イオン水洗浄ステップを行うことをお勧めします。

洗浄ステップが表示されない場合、ステップリストエリアの下にある**洗浄ステップの表示オ**プションボタンを選択します。


洗浄ステップを追加するには:

- 1 ステップリストから、既存の洗浄ステップ(ISHプロトコールとIHCプロトコール) を選択します。
- 2 洗浄を挿入をクリックします。


ISH プロトコールとIHC プロトコールでは、新たな洗浄 ステップは、現在の洗浄 シーケンスの最後に追加されます。

新しい洗浄ステップには緑色のバーが表示され、保存されていたプロトコールから変更があったことを示します。

- 3 必要に応じて、ステップリストで洗浄ステップのパラメータを変更します。
- 4 保存をクリックします。
- 5 確認 ウィンドウで、はいをクリックします。

洗浄ステップを削除するには、ステップを選択し、**洗浄の削除を**クリックします。ISH プロトコールとIHC プロトコールで削除できるのは、洗浄シーケンスの必須ステップの後に続く洗浄ステップのみです。

7.4.3 プロトコールの規則

ユーザーが作成または編集したプロトコールは、基本規則に準拠していなければ保存することはできません。 ただしこれらの規則は、そのプロトコールを使用した際に良好な結果が出ることを保証するものではありません。

- 1 プロトコールの名前は、
 - a ユニークである必要があります。
 - b 空白またはアスタリスク以外の文字で始まる必要があります。
- 2 プロトコールの略称は、
 - a ユニークである必要があります。
 - b 空白またはアスタリスク以外の文字で始まる必要があります。
 - c 8文字以下である必要があります。
- 3 IHCプロトコールは全て、少なくとも1つのマーカーステップを含む必要があります。

- 4 全ての染色プロトコールは、Leica Biosystems 検出システムから少なくとも1つの試薬を含む必要があります。
- 5 試薬ステップの後に、BOND-III および BOND-MAX には少なくとも3つの洗浄ステップ(または BOND-PRIME には少なくとも2つの洗浄ステップ) が続くか、同じ試薬が続く必要があります。
- 6 染色プロトコールでは、最後の3つのステップは洗浄ステップである必要があります。
- 7 染色プロトコールでは、全てのステップ温度は室温とします。
- 8 前処理プロトコールでは、各手順の温度設定は下記の範囲で設定してください。

プロトコールステップ	温度範囲(℃)
ベーキング&脱パラフィン、ベーキングステップ	35 ∽ 72
加熱処理(BOND-III およびBOND-MAX)	35∽100
加熱処理(BOND-PRIME)	35∽104
酵素処理	35∽100
ディネーチャー	70 ∽ 100
ハイブリダイゼーション	37 ∽ 65

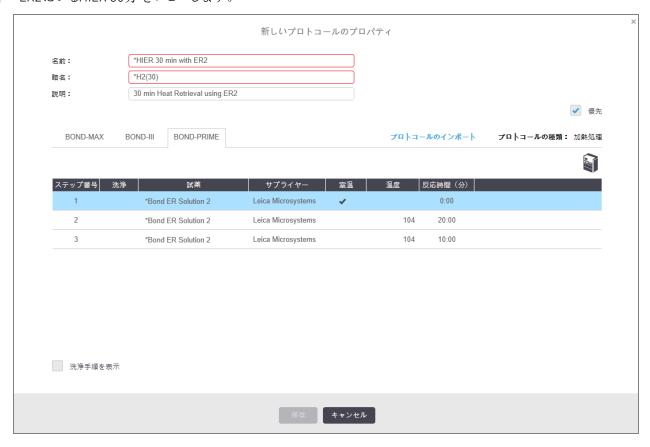
9 分・秒(mm:ss)で設定するインキュベーション時間は、次の表の範囲内に設定してください。この範囲は強制ではありません。

プロトコールステップ	反応時間(分)
ベーキング&脱パラフィン、ベーキングステップ	0 ∽ 60
加熱処理 (室温ステップ)	0~15
加熱処理(BOND-IIIおよびBOND-MAXの加熱ステップ)	5~60
加熱処理(BOND-PRIMEの加熱ステップ)	2 ∽ 20
酵素処理(ステップ1)	0
酵素処理(酵素ステップ)	0~15
ディネーチャー	5 ∽ 20
ハイブリダイゼーション	20-950
染色プロトコール、試薬ステップ	0 ∽ 60
染色プロトコール、洗浄ステップ	0 ∽ 55

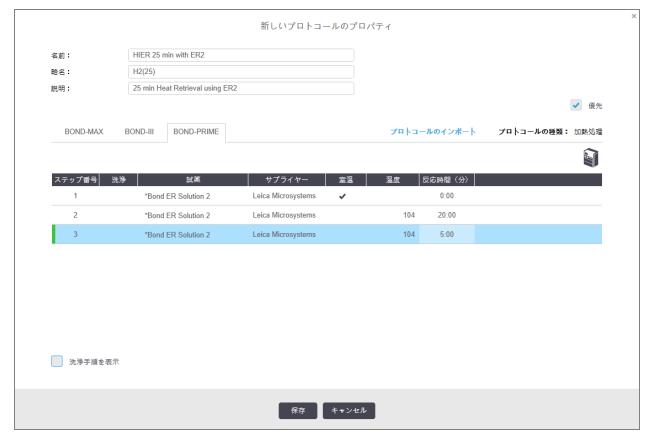
10 各ステップについて、試薬、反応時間および温度(該当する場合)を完全に定義する必要があります。

11 シングル染色プロトコールと連続二重染色プロトコールには、プロトコールに従って1種類の混合試薬 (混合 DAB など)のみを含めることができ、プロトコールの最大2つのステップで使用されます。連続二重染色手順では、2種類の混合試薬を、各プロトコールに1つ、最大4つのステップで、各プロトコールに2つ含めることができます。

並行二重染色手順では、2種類の混合試薬を含めることができ、各混合試薬はプロトコールで最大 2回適用できます。


12 染色プロトコールの混合試薬を構成するために必要なコンポーネントは全て、そのプロトコールの適合検出システムから調達されている必要があります。

BOND-PRIME特有のプロトコールルール


熱による賦活化

ユーザーが編集したBOND-PRIME HIERプロトコール内のステップは、反応時間を20分より長くすることはできません。より長いプロトコールを作成するには、既存のHIERプロトコール(*ER2によるHIER 40分など)を使用するか、より長いプロトコールを変更して目的の反応時間に短縮します。たとえば、25分のER2 HIERプロトコールを作成するには、次のようにします。

1 *ER2によるHIER 30分をコピーします。

2 2番目の加熱ステップを10分から5分に変更し、保存をクリックします。

染色

各試薬ステップには、プロトコールが処理モジュールで許容される最短反応時間があります。下の表は、BOND-PRIMEで許容されるプロトコールの最短反応時間を示しています。

表 7-1:*IHC Fおよび*IHC JのBOND-PRIMEで許容される最短反応時間

*IHC Protoc	col F	*IHC Protocol J			
手順	最短反応時間(分)	手順	最短反応時間(分)		
マーカー	9:00	マーカー	9:00		
ポストプライマリー	5:00	ポストプライマリ ー AP	11:00		
パーオキシダーゼブロック	該当なし	ポリマーAP	16:00		
ポリマー	5:00	混合RED-PRIME	2:00		
混合 DAB-PRIME	2:00	混合RED-PRIME	2:00		
混合 DAB-PRIME	2:00	BOND-PRIME Hematoxylin	該当なし		
BOND-PRIME Hematoxylin	3:00				

上記の時間よりも短い時間のBOND-PRIMEプロトコールステップを設定した場合、BONDコントローラーでプロトコールを保存できます。ただし、スライドが処理モジュールのプリロードドロワーにセットされると、次のエラーメッセージが表示されます。

「スライドを処理できません。プロトコール定義が無効です。プリロードドロワーからスライドを取り外し、プロトコールを確認してください。それでも問題が発生し続ける場合は、カスタマーサポートにご連絡ください。(29012)」

スライドが現在ARCモジュールで処理されている場合、処理モジュールを再起動する前に、それらのスライドの処理を終了させてください。

7.4.4 複数の処理モジュールタイプとプロトコールバージョン

BOND、BOND-III および BOND-MAX 処理 モジュールを持つ BOND-PRIME システムでは、各プロトコールで、3 つのタイプの処理 モジュールに別々のバージョンを使用できます。

Leica Biosystemsプロトコールは、BONDシステムでの使用向けにテストおよび最適化されています。これらのプロトコールとは、Leica Biosystemsが厳密にテストし検証したプロトコールです。

「同じ」プロトコールでバージョンが異なる場合、次のようなハードウェアの違いに対応することができます:

- BOND-III処理 モジュールの高速冷却(BOND-IIIプロトコールバージョンのスライドを冷却 するステップが通常、BOND-MAXバージョンの対応 するステップよりも短くなります)
- BOND-PRIMEのアクティブ試薬コントロール(ARC)モジュールの新しいコアテクノロジー

プロトコールバージョン間の相違点は、ソフトウェアに表示されるステップリストでは確認できないことがあります。たとえば、BOND-III プロトコールバージョンにはバルク溶液ロボットに関する指示があって表示されませんが、BOND-MAX 処理モジュールにはそれらの指示がありません。

全 ての BOND システムに、あらかじめ定義 されたプロトコールの BOND-III、BOND-MAX および BOND-PRIME バージョンが存在します。

ただし、新しい処理モジュールタイプがシステムに追加された場合、その処理モジュールのタイプに、既存のユーザー定義プロトコールの新しいバージョンを作成する必要があります。これを行うには、Leica Biosystemsのあらかじめ定義されたプロトコールをインポートしてから、必要に応じてステップをコピーまたは変更します(7.4.4.1 プロトコールバージョンのインポートを参照)。

BOND-PRIMEにおいて、施設であらかじめ定義されたLeica Biosystemsプロトコール(*IHCF、*IHCJなど)をさらに変更する必要がある場合、以下を**行う必要があります**。

- あらかじめ定義されたプロトコールを、施設の現在のプロトコールにインポート/コピーします。7.4.4.1 プロトコールバージョンのインポートを参照してください。
- 表 7-1 *IHC Fおよび*IHC JのBOND-PRIMEで許容される最短反応時間にリストされている最短反応時間に従います。
- BOND-PRIMEでの使用向けに最適化されているため、BOND-PRIME染色シーケンスに従います。7.1.2プロトコールシーケンスを参照してください。

7.4.4.1 プロトコールバージョンのインポート

新しい処理モジュールタイプのプロトコールバージョンを作成するには、下の指示に従ってください。この方法は、既存のプロトコールバージョンの上書きにも使用できますが、通常は、最初の設定で必要とされない限り使用しないでください。

プロトコールは、同じ処理 モジュールタイプにのみ転送 できます(例: BOND-IIIからBOND-IIIへ、BOND-PRIMEからBOND-PRIMEへ)。

- 1 プロトコール設定画面で、新しいバージョンを作成したいユーザープロトコールを選択し。
- 2 閉くをクリックします。プロトコールのプロパティの編集ダイアログボックスが開きます。
- 3 プロトコールのインポートをクリックします。

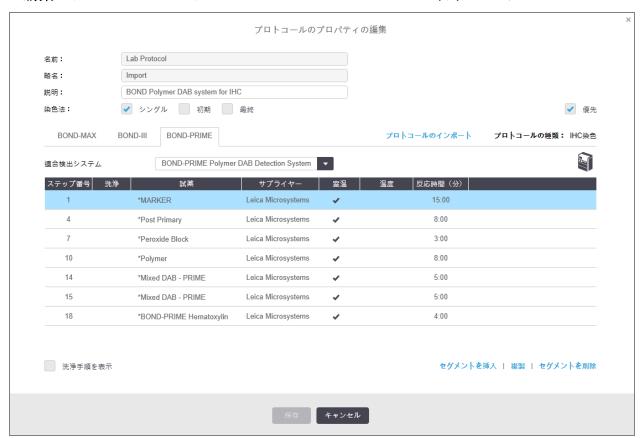
4 プロトコールのインポートダイアログボックスが開きます。

5 **処理 モジュール**ドロップダウンリストで、新しい処理 モジュールタイプを選択します。

ダイアログに表示されるプロトコールのリストが更新され、選択した処理モジュールタイプのバージョンが含まれているプロトコールのみが表示されます。

6 オプションとして、**推奨**ステータスを選択すると優先プロトコールのみが表示されます。また、選択を解除すると全プロトコールが表示されます。

7 リストからインポートするプロトコールをクリックします。


プロトコールのベストプラクティス:

- プロトコールがIHCのBOND Polymer DAB System向 けである場合、*IHC Fを選択します。
- プロトコールがIHCのBOND Polymer AP Red System向 けである場合、*IHC Jを選択します。
- 必要な検出キットのデフォルトのプロトコールを選択します。

後の設定を簡単にするために、新しいバージョンを作成しょうとしているプロトコールにできる限り近いプロトコールを選択してください。たとえば、同じ検出システムを使用している(可能ならば同じステップ数のある)プロトコールを選択します。

8 インポートをクリックします。

プロトコールのインポートダイアログが閉じます。新しい処理モジュールタイプのプロトコールのプロパティの編集ダイアログのタブには、インポートされたプロトコールバージョンが表示されます。

選択した処理モジュールタイプのタブだけが更新されます。

- 9 必要に応じて、新しいプロトコールバージョンを編集します(7.4.1 プロトコールステップの編集を参照)。 データを失うことなく、処理モデュールのタブをクリックすることができます。
- 10 保存をクリックします。

両方の処理モデュールのタイプで同等の染色が行えるプロトコールになっているかどうかは、自身で確認してください。

7.4.5 プロトコールの削除

ユーザープロトコールを削除するには、プロトコール設定画面のリストから選択し、削除をクリックします。

定義済みのLeica Biosystems プロトコール (アスタリスクで始まる) は、削除できません。ただし、非表示にすることはできます。プロトコールを開き、**優先の**選択を外し、プロトコール設定画面の推奨ステータスフィルターを「優先」に設定します。

7.5 プロトコールレポート

プロトコールレポートは、選択されたプロトコールの手順詳細を表示します。レポートを作成するには、プロトコールの設定画面のリストからプロトコールを選択し、レポートをクリックします。複数の処理モジュールタイプがシステムにある場合、目的のプロトコールバージョンに対応する処理モジュールタイプを選択します。レポートを作成する日付を選択することもできます。終了したら、レポートの作成をクリックします。

新しいウィンドウにレポートが表示されます。レポートの右上に、下表の情報が表示されます。

フィールド	内容
正式名	プロトコールの正式名が表示されます。
ID	プロトコールの固有の識別番号が表示されます。
タイプ	プロトコールの種類(7.1プロトコールの種類を参照)。
作成者	表示されたバージョンの作成者のユーザー名
作成日時	あらかじめ定義されたプロトコールの場合、日時はBONDのデータ定義(BDD)の更新にインポートされます。ユーザー定義のプロトコールの場合は、作成日時。
施設	管理者の 施設設定 画面に入力された施設の名前 (10.5.1 施設設定を参照)。
染色のステータス	二重またはシングル染色に関してプロトコールが適している役割(染色法を参照)。

レポートの本文には、各ステップごとに以下の項目が表示されます。

- 試薬とサプライヤー
- ステップのタイプ(試薬または洗浄)
- 反応時間
- 温度
- 分注タイプ(Covertile™の位置と分注量の詳細。サービス担当者が使用する場合があります)。

レポートウィンドウおよび印刷オプションの詳細については、3.7レポートを参照してください。

7.6 あらかじめ定義されたプロトコール

次のセクションでは、BONDソフトウェアに含まれている、あらかじめ定義されたプロトコールの詳細について説明しています。

次回のソフトウェアリリースまでに更新があった場合、以下のリストに記載されたプロトコールが変更される可能性があります。以下のリストは出版時のものです。また、一部のプロトコールは、まだBOND-PRIME処理モジュールで使用できない可能性があります。

- 7.6.1 染色プロトコール
- 7.6.2 前処理プロトコール

7.6.1 染色プロトコール

各染色プロトコールは、特定のBOND検出システムを使用するように設定されています。

それぞれの検出システムの詳細情報については、製品の添付文書、またはLeica BiosystemsのWebサイト: www.leicabiosystems.com を参照してください。

プロトコールの編集機能を使用すれば、ユーザーが作成したプロトコールの基本構成単位として、これらのプロトコールを使用できます(7.3 新規プロトコールの作成 および7.4 ユーザープロトコールの編集を参照)。

下記のプロトコールの中には、お使いの地域での規制により承認されていない検出システムとともに使用するものが含まれている可能性があります。こうしたプロトコールはソフトウェアに表示されません。

7.6.1.1 IHC

名前	適合検出システム	検出システムに関する注意
*IHC Protocol F	Bond Polymer Refine Detection	BOND システム用に最適化された高感度 ビオチンフリー検出システム。高強度の染色処理によって、標的抗原を明確に識別します。
*IHC Protocol H	Bond™ Oracle™ HER2 IHC System	HER2コンプリートシステム。HER2抗体、陰性コントロール、高感度コンパクトポリマーベースシステムが含まれます。
	注記: 使用の可否は薬事承認によって異なります。	このシステムには、HER2プロファイル用コントロールスライドも含まれ、全自動でのHER-2免疫染色プロファイルから、核染色までが可能です
*IHC Protocol J	BOND Polymer Refine Red Detection	in vitro用途の高感度 コンパクトポリマーシステム。アルカリフォスファターゼによる明赤色の免疫染色とヘマトキシリン核染色(青色)です。

名前	適合検出システム	検出システムに関する注意
*IHC Protocol K	ChromoPlex™ 1 Dual	in vitro 用、マウスおよびウサギー次抗体用検出キット
	Detection (100 test)	BOND システム上でホルマリン固定パラフィン切片の染色用として使用されます。
*IHC Protocol K -	ChromoPlex™ 1 Dual	in vitro 用、マウスおよびウサギー次抗体用検出キット
50 Test	Detection (50 test)	BOND システム上でホルマリン固定パラフィン切片の染色用として使用されます。
*IHC Protocol Q	Bond Polymer Refine Detection	BOND システム用に最適化された高感度 ビオチンフリー検出システム。過酸化物感受性抗原に特有の高強度の染色プロトコールによって、標的抗原を明確に識別します。

7.6.1.2 ISH

名前	適合検出システム	検出システムに関する注意
*FISH Protocol A	Leica HER2 FISH System - 30 Test 注記:使用の可否は 薬事承認によって異 なります。	コンプリーデュアルプローブ LSI HER2/CEP17FISH システム。希釈 済み LSI HER2/CEP17 デュアルプローブおよびポストハイブリダイ ゼーション洗浄液 2で構成されています。パラフィン切片で乳 がんの HER2 遺伝子の増幅の判定に役立ちます。In Vitro Diagnostic 用 注記: LSI とCEPは、Abbott Molecular Inc.の登録商標です。許
		可の元に使用。許可の元に使用。
*ISH Protocol A	BOND Polymer Refine Detection	BOND システム用に最適化された高感度 ビオチンフリー検出システム。抗FITC リンカーを用いてRNAを検出します。
*ISH Protocol B	BOND Polymer Refine Detection	BOND システム用に最適化された高感度 ビオチンフリー検出システム。 抗ビオチンリンカーを用いてDNAを検出します。

7.6.2 前処理プロトコール

プロトコールの種 類	プロトコール名	メモ				
調製	*Dewax	調製プロトコールは BOND または BOND-PRIME Dewax Solution を使用して、組織の包埋に使用したパラフィンワックスを除去し、組織を親水化します。				
	*ベーキング&脱パラフィン	脱パラフィン前に、スライドへの接着性を改善するために、組織のベーキングされます。 詳細については、14.2.3 脱パラフィンとベーキングを参照				
		してください。				
加熱処理	*ER1 または ER2による加熱 処理	加熱処理は、加熱処理用試薬によって、エピトップが露呈され、組織構造を変化させ染色を改善します.あらかじめ定義されたいくつかの加熱による前処理プロトコールが使用でき、これらは長さと使用する温度が異なっています。				
酵素処理	*Enzyme 1	8つの酵素処理プロトコールが利用できます。				
	*Enzyme 2 *Enzyme 3 *Enzyme 5	このようなプロトコールは、使用する酵素と反応時間で変わります。				
ISH ディネーチャー	*ディネーチャー(10分)	あらかじめ定義 された1つのISHディネーチャープロトコール (10分)。				
ISH ハイブリダイゼー ション	*ISH Hybridization (2Hr) *ISH Hybridization (12Hr)	あらかじめ定義 された2つのハイブリダイゼーションプロトコール(2時間および12時間)が使用できます。				

8 試薬管理 (BOND コントロー ラー上)

BOND システムは、試薬容器 とその内容 を追跡 することによって、システム上で使用したバルク試薬以外の全試薬の記録を保持しています。また、指定 マーカーでスライドのパネルを設定 することによりケースの作成を加速することができます。

本章の構成は以下のとおりです。

- 8.1 試薬管理の概要
- 8.2 試薬の設定画面
- 8.3 試薬在庫画面
- 8.4 試薬パネル画面

試薬の設定

97

8.1 試薬管理の概要

BOND システムにおける試薬管理には、各試薬の詳細の設定とメンテナンス、全試薬パッケージの在庫管理 (バルク試薬を除く、およびスライド作成時に使用するマーカーのセット(パネル)の作成が含まれます。

この操作を行うための試薬管理画面を開くには、ファンクションバーの**試薬の設定**アイコンをクリックします。

画面の左上にあるタブをクリックして必要な画面を開きます(設定、在庫、パネル)。

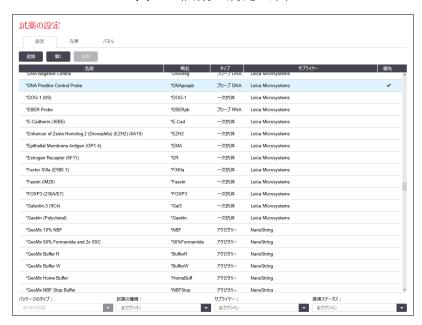


図8-1:試薬の設定画面

試薬の設定画面には、BONDシステムで認識されている全試薬のリストが表示されます。リストには、試薬システム(BOND検出システムなど)は表示されませんが、システム内の構成試薬は表示されます。また混合試薬(検出システム内のコンポーネントから処理モデュール(PM)で混合される試薬)は表示されます。画面される、試薬のプロパティを表示したり、システムで新しい試薬を作成したり、試薬のオプションを設定する際に使用します。

一方、「試薬の在庫」画面にはそれぞれの試薬パッケージと共に試薬システムの在庫も表示されます。試薬やシステムの種類を問わず、リストには総在庫量と個々のパッケージの情報が表示されます。

試薬パネル画面では、通常、特殊な診断で使用するマーカーのセットを作成できます。BOND ソフトウェアでスライドの作成中に、パネルを選択すると、パネル内の各マーカーにスライドが作成され、手順を極めて迅速化することができます。

8.1.1 一般情報

- 8.1.1.1 試薬の分類
- 8.1.1.2 試薬のワークフロー
- 8.1.1.3 試薬の識別
- 8.1.1.4 試薬の代用
- 8.1.1.5 BOND™ Oracle™ HER2 IHC System

8.1.1.1 試薬の分類

BOND 試薬 システムは、BOND-III および BOND-MAX 処理 モジュール専用 です。BOND-PRIME 試薬 システムは、BOND-PRIME 処理 モジュール専用 です。

BOND システムではバルク液とは別に、4種類の流体の「パッケージのタイプ」を選択することができます。

- BOND 検出 システム: スライド設定時 にユーザーが選択 したマーカーと併用 する検出系、トレイにパッケージされています。
- Bond Oracle™ HER2 IHC System: マーカー、アクセサリーおよび検出試薬を含むパッケージされたトレイ。 システムには、コントロールスライドが含まれています。
- BOND および BOND-III 処理 モジュールの BOND-MAX クリーニングシステム: 処理 モジュールのクリーニング 用 にトレイにパッケージされたクリーニングシステム(12.6.1 吸引プローブのクリーニングを参照)。BOND-PRIME クリーニングシステムの使用方法の詳細については、別書の BOND-PRIME ユーザーマニュアルを 参照してください。
- 試薬 コンテナ: マーカー(一次抗体 またはプローブ)またはアクセサリー試薬の入った個々の試薬 コンテナ。調整済み試薬 またはオープンコンテナ(2.6.3 試薬システムと容器を参照)。

BOND 検出 システム(Bond Oracle HER2 IHC System を含む) とクリーニングシステムは、「試薬システム」と総称されます。

「マーカー」とは、IHCの一次抗体またはISHのプローブを指しています。

試薬は以下の「試薬の種類」に分類されます。

- 一次:IHCで使用するマーカー試薬。
- プローブ: ISHで使用するマーカー試薬。
- アクセサリー: マーカー以外の全試薬。マーカーで染色される前またはされた後での組織の処理に使用します。
- 混合:プロトコールの実行中に、試薬システムのコンポーネント、または、個々の容器のコンポーネントから作成されるアクセサリー試薬。混合試薬のストックを置くことはできませんが、プロトコールステップに含まれる場合にはシステム内に存在していなければなりません。

「試薬の設定」および「試薬在庫」画面の試薬と試薬システムのリストは、こうした分類に従って検索できます。

8.1.1.2 試薬のワークフロー

BOND システムで試薬を使用する前に、試薬が認識される必要があります(3ステップ)。

- 1 試薬のタイプが、**試薬の設定**画面の試薬リストに表示されていることを確認します。Leica Biosystems の全希釈済抗体、および Leica Biosystems のアクセサリー試薬の大部分(BOND検出システムとクリーニングシステムを含む)は、定義済みですが、その他の試薬はユーザーがリストに追加しなければなりません。
- 2 新しいストックを受領したら、個々の試薬コンテナと試薬システムがBONDシステムにスキャン(登録)され、在庫に追加されます。
- 3 試薬 またはシステムの準備ができたら、試薬 ラックにロードされます。BONDシステムはそれを識別して、 試薬 を使用するときに在庫を更新します。

BONDソフトウェアは、個々のコンテナとシステムの内容を記録し、試薬のタイプごとの合計を記録します。 Leica Biosystemsの試薬では、最低在庫を設定すると、ストックがそれ以下になった場合、警告を表示します。次で試薬または試薬システムの詳細を参照してください: 8.3.2 試薬または試薬システムの詳細

8.1.1.3 試薬の識別

各試薬コンテナには識別用に2個のバーコードが付いています。容器前面の長い方のバーコードは容器の登録と登録後の識別に使用されます(8.3.3 試薬と試薬システムの登録を参照)。容器上面(フタの裏)の短いバーコードは、処理モデュールにロードする際に、BONDシステムで容器の識別に使用される一意なパック識別子(UPI)を解読するために使用されます。スキャンが失敗した場合、UPIを使用して、ロードされた試薬コンテナを手動で識別します(5.1.3.5 未検出試薬の解決を参照)。

BOND および BOND-III 処理 モジュール用の BOND-MAX 試薬 システムは、トレイ側面の2つのバーコードで識別されます。両方のバーコードをスキャンしてシステムを登録し、登録後に識別を行います。

BOND-PRIME 試薬システムにはトレイ側面に1つの2次元バーコードがあり、これを使用して登録後の識別を行います。

試薬システム内の各容器には上面と前面にバーコードがあります。BOND ソフトウェアは、これらを使用して、処理モジュールにロードする際にシステムを識別します。BOND-MAX または BOND-IIIに試薬システムがロードされた際に自動識別が失敗した場合、UPI番号を入力すると、コンテナを手動で識別することができます。BOND-PRIME 処理モジュールでは、これを行うことはできません。

個々のコンテナの側面にある長いバーコード、または試薬システムの両側にある2つのバーコード(または1つの2次元バーコード)を再スキャンすると、いつでも、登録済みの試薬または試薬システムに関する情報を表示することができます。

パッケージスキャンされない場合は、試薬在庫画面上で、ファンクションバーの検索アイコンか、IDを入力ボタンをクリックしてID手動入力ダイアログ開きます。

個々のコンテナ/試薬システムの前面の長いバーコードに対応する数字、または2次元バーコードに対応する数字を入力し、検証するをクリックします(試薬システムでは、各バーコードを入力した後に検証するをクリックします)。

8.1.1.4 試薬の代用

BOND-PRIMF

BOND-PRIME では、試薬の代用がありません。

BOND-PRIME によって試薬の量が不十分であることが検出されると、次のいずれかが行われます。

- ARCモジュールでスライドの処理が既に開始されている場合は、それらのスライドにフラグが付きます。
- スライドがまだプリロードドロワーにある場合は、そのスライドが拒否されます。

BOND-III & BOND-MAX

処理開始前に、処理モデュールに必要な全試薬が十分量ロードされている必要があります。ところが実際には、最初に存在した試薬が必要なときに使用できないケースがあります。これは恐らく、ユーザーが試薬トレイを取り外したか、または試薬コンテナに測定量よりも実際には少ない試薬しか入っていなかった場合が考えられます。このときBONDシステムは、別の容器の同種の試薬を置換して使用することを試みます。使用できない試薬に替えて他の試薬を使用する場合のBONDシステムの規則は、以下のとおりです。

- システムは最初に、不足した試薬と同じ検出システムの同じ種類の試薬を代用しょうと試みます。 成功すると、通知なしで処理が続行します。
- 次に、システムは不足した試薬と同じタイプで同じロット番号の別のシステムの試薬で代用しょうと試みます。

成功すると、通知なしで処理が続行します。

• 次に、システムは不足した試薬と同じタイプでロットが別番号の別のシステムの試薬で代用しょうと試みます。

成功すると、処理が続行します。ただしこの試薬で処理されたスライドには、イベントの通知が行われます。

• 試薬の代用が不可能な場合は、試薬は全ての分注についてバルク試薬で代用され、最後までスライドを処理します。

処理は続行しますが、この試薬で処理されたスライドには、イベントの通知が行われます。

全てのスライドを対象としてバルク試薬で代用する必要がある場合は、処理は棄却されます。

8.1.1.5 BOND™ Oracle™ HER2 IHC System

これらは BOND-PRIME 処理 モジュールで使用できません。

BOND™ Oracle™ HER2 IHC System には試薬システムがあり、コントロールスライドが含まれている場合があります。標準のバルク試薬と、システムによってはアクセサリー試薬も必要になります。

必ず製品の指示に従い、以下の点に注意してください。

- Bond™ Oracle™ HER2 IHCシステムに付属 するコントロールスライドはOracle コントロールスライドと呼ばれ、Oracle を使用 する際の、施設のコントロールスライドとは異なります:
 - 施設 コントロールスライドは、**Oracle コントロール**オプションではな **、「スライドを追加」**ダイアログの標準の**組織の種類**とマーカー設定を使用してソフトウェアで作成*されます*。
 - Oracle コントロールスライドは、適切な組織の種類 オプションだけでなく、Oracle コントロールオプションも使用して設定する必要があります。
- Oracle コントロールスライドは、そのコントロールスライドが付属 する特定のシステムでのみ使用 することができます。
- Oracle スライドラベルは、管理者の**ラベル**画面で定義されたの特別なOracle ラベルテンプレートを使用します(10.3 ラベルを参照)。

8.2 試薬の設定画面

試薬の設定画面には、BOND ソフトウェアが認識している全試薬のリストが表示されます(試薬システムの試薬、および試薬システムのコンポーネントを用いて処理モデュールにて混合された試薬を含む)。BOND の希釈済み一次抗体は、BOND の希釈済みISHプローブや多くのLeica Biosystems の一般的なアクセサリー試薬と共に、リスト内に定義済みです(削除できません)。

表の下のフィルターによって、表示させたい試薬のタイプが設定できます。パッケージタイプについてはフィルタリングすることはできませんが、試薬のタイプ(一次試薬、プローブ、アクセサリー試薬、混合試薬、Oracle 試薬、および並行二重染色の一次試薬とプローブ)、サプライヤー、および優先順位についてはフィルタリングできます。

表の上のボタンを用いて、リストに新しい試薬を追加したり、テーブル上で選択した試薬を開いたり、その詳細を表示または編集したり、表から選択した試薬を削除できます(ただし削除できるのは Leica Biosystems 以外の試薬のみです)。

ここに記載されていない試薬や、推奨ステータスのないユーザ定義の試薬を登録することはできません。

表には、各試薬の詳細が表示されます(以下を参照)。

名前 試薬の正式名。

最初の文字に「*」が付いている場合は、定義済みのLeica Biosystems試薬を意味し

ます。

略名 試薬の略名(スライドラベルやステータス画面で使用)

タイプ 試薬のタイプ(例:一次)

サプライヤー 試薬のサプライヤーの名前

優先-研究者の優 先状況(スタディを 作成する際には、優

先研究者のみがドロップダウンリストに表示されます).

チェックの入った(優先)マーカーは、BONDソフトウェアのいずれかのスライド設定 リストに

を含まれています。

編集可能な試薬のプロパティ

試薬では、名前とサプライヤーの詳細以外に、次の項目を編集することができます。

1 マーカーについて:

- a スライドの作成中にマーカーを選択すると、デフォルト設定によりプロトコールが選択されます (6.5.2 スライドの作成を参照)。二重染色で1つのマーカーと予備および最終マーカーに異なるプロトコールを設定できます。
- b 推奨ステータス スライドの作成中に、マーカーのドロップダウンリストに、優先マーカーのみが表示されます(6.5.2 スライドの作成を参照)。また、パネルの作成中に**試薬パネルのプロパティ**ダイアログに使用できるマーカーのリストが表示されます(8.4.1 パネルの作成を参照)。試薬の画面のリストはまた、このプロパティーに基づき検索できます。
- c ハザードステータス 「ハザード」のフラグが付いているマーカーは、ハザードな廃液 として処理されます。この設定は、あらかじめ定義された試薬については変更できません。
- 2 アクセサリー試薬については、
 - a 試薬に対応したバルク試薬となっています。BONDシステムは、対応していないアクセサリー試薬やバルク試薬が使用されそうになると自動的に阻止します。
 - b 推奨ステータス・試薬の画面のリストは、このプロパティに基づき検索できます。
 - c ハザードステータス 「ハザード」のフラグが付いている試薬は、ハザードな廃液として処理されます。この設定は、あらかじめ定義された試薬については変更できません。

以下の各項目を参照:

- 8.2.1 試薬の追加または編集
- 8.2.2 試薬の削除

8.2.1 試薬の追加または編集

リストに試薬を追加するには、**試薬の設定**画面で**追加**をクリックします。BOND ソフトウェアに**試薬を追加**ダイアログが表示されます。下記の図 8-2を参照。

図 8-2: 試薬の追加ダイアログ

既存の試薬の詳細を変更するには、希望の試薬を選択して**開く**をクリックします(あるいは、希望の試薬をダブルクリックします)。**試薬プロパティの編集**ダイアログが開きます。これは**試薬を追加**ダイアログと同じ画面で、選択した試薬の詳細が入力されています。

以下の指示に従って、試薬を追加または編集します。

1 新規試薬を追加するには、**名前**フィールドに、試薬の内容を表すような名前を入力します。 新しい試薬の名前の冒頭に「*」は使用できません(アスタリスクは Leica Biosystems の試薬にしか使用できません)。

プロトコール作成時に、その他の試薬と混同するような名前を付けないように注意してください。

2 新規試薬については、**略名**フィールドに略名を入力します(8文字まで)。 この名前は**ステータス**画面のスライドアイコンに表示され、またスライドラベルにも印刷されます。

- 3 LIS にBONDシステムが接続されている場合、**正式名**フィールドに LIS で使用する試薬名を入力します (アクセサリー試薬には適用されません)。
- 4 新規試薬を作成するには、ドロップダウンリストのタイプから、試薬の**タイプ**を選択します。選択されたタイプに応じてダイアログが変化します。
- 5 サプライヤーフィールドに、この試薬のサプライヤー名を入力してください。
- 6 試薬がマーカー(一次抗体、RNA、またはDNAプローブ)の場合、マーカーを使用する際の、デフォルトのプロトコールを選択します。
- 7 **染色方法**フィールドで、シングル/連続二重を選択し、シングルタブでマーカーのデフォルトのプロトコールをシングル染色処理に設定します。連続二重染色処理のマーカーについては、**予備**タブで最初のマーカーのデフォルトのプロトコールを設定し、最終タブで最終マーカーのデフォルトのプロトコールを設定します。
- 8 並行二重を選択し、並行二重染色処理でのマーカーのデフォルトのプロトコールを設定します。

試薬がRNA または DNA プローブである場合は、追加のプロトコール(ディネーチャーとハイブリダイゼーション)が上記の全てのタブに表示されます。

- 9 あらかじめ定義済みのBONDマーカーについては、マーカーに推奨される工場出荷時のデフォルト設定を復元する場合は、**工場出荷時のデフォルトプロトコールの復元**をクリックします(工場出荷時のデフォルトを復元するには、管理者ユーザーの役割でログオンする必要があります)。
- 10 試薬が、ユーザーが作成したアクセサリー試薬の場合は、バルク溶液の互換性を確認し、必要に応じて調整します。

大部分のシステムでは、デフォルトで、**互換性バルク**リストに BOND Wash Solution (*BWash) および脱イオン水(*DI) と表示されています。このいずれかが流路系での試薬の洗浄等に使用されます。バルク溶液とアクセサリー試薬の直接接触が好ましくない場合でも、吸引プローブでは若干の接触が起こる可能性があります。この可能性を完全に排除するには、試薬との接触が好ましくないバルク溶液を選択し、<< をクリックして、使用可能なバルクリストに移動させてください。

1種類以上のバルク溶液を「互換性あり」として設定してください。

注意: 互換性のない溶液同士を接触させると、染色が不十分になったり、処理モデュールに損傷を生じる原因となります。溶液の互換性の有無については Leica Biosystems までお問い合わせください。

11 マーカーについては、**優先**をクリックすると、「スライドの設定」ダイアログに一次試薬またはプローブが表示されます。

アクセサリー試薬については、「優先ステータス」が使用できるのは、「**試薬の設定」**および「**在庫」**画面のリストフィルターのみです。

- 12 試薬をハザード廃液 コンテナに排出したい場合、ハザードをクリックします。
- 13 試薬の詳細をBONDシステムに追加するには、保存をクリックします。

処理中に変更を加えないで終了する場合は、キャンセルをクリックしてください。

8.2.2 試薬の削除

試薬を削除するには、試薬の設定画面で試薬を選択し、削除をクリックします。定義済みのLeica Biosystems 試薬 (アスタリスクで始まる)は削除できません。

試薬の詳細を削除すると、その試薬パッケージの在庫の詳細も削除されます。削除した試薬の詳細または在庫の詳細は回復できません。

以前に使用した試薬が不要となった場合、削除するよりも、非優先とマーキングした方がよいでしょう。こうするとソフトウェアの画面から削除されますが、システム内にはまだ残っています。

8.3 試薬在庫画面

試薬在庫画面に、BONDにこれまで登録された(削除されていない)すべての試薬と試薬システムおよびその現在の保有在庫がリストされます。在庫の表示および管理には、この画面を使用します。

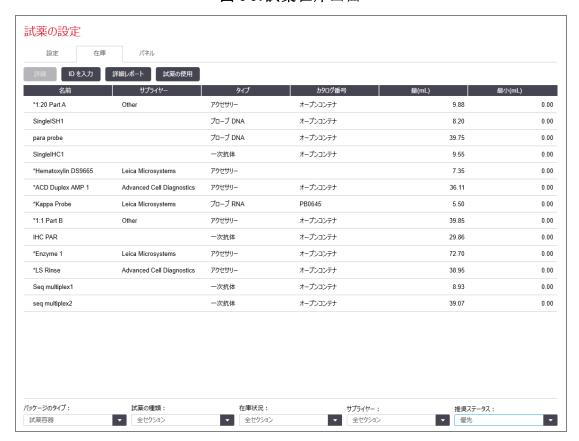


図 8-3:試薬在庫画面

最低在庫量に満たない Leica Biosystems 試薬は、画面の左側に赤色の縦棒でハイライト表示されます。 表の下にあるフィルターを使用すると、表示される試薬またはシステムのタイプを設定できます。 BOND検出システム、Oracleシステム、およびクリーニングシステムについては(パッケージタイプフィルターで選択)、在庫状況のみに基づいて検索できます。これにより、登録された全システム、在庫のあるシステムのみ、または再注文レベル未満のシステムを表示できます。

個別の試薬 コンテナについては、**サプライヤー、優先 ステータス、**および**試薬のタイプ**でフィルタリングすることもできます(「一次試薬」、「プローブ」、「並行 カクテルー次試薬」、「アクセサリー試薬」、または「全試薬」を表示)。

試薬の種類により、以下の詳細の一部または全てを表示できます。

名前 試薬の正式名。

サプライヤー 試薬のサプライヤーの名前試薬システムには表示されません。

タイプ 試薬のタイプ(例:一次)試薬システムには表示されません。

カタログ番号 試薬のオーダーの際使用されるカタログ番号。試薬システムには表示されていません

(欄はありますが、全ての値は空白です)。

量(mL) 使用可能な試薬の総量。現在処理モデュールにロードされているか否かにかかわら

ず、登録した全試薬パッケージが含まれます(8.3.1 試薬量の決定を参照)。

処回数(残) Oracleシステムにおける、システムに残っている処理回数。

クリーニング残回数 クリーニングシステム内のクリーニング残り回数

最小(mL) Leica Biosystems 試薬の場合のみ。再注文を必要とする在庫量(8.3.2.1 最低在庫

の設定変更を参照)。

最小(処理回数) Oracleシステムにおける、再注文を必要とする残りの処理回数(8.3.2.1 最低在庫の

設定変更を参照)。

最小(クリーニング回 クリーニングシステムで再注文のプロンプトが表示されるクリーニング残回数(8.3.2.1

数) 最低在庫の設定変更を参照)。

試薬表の上のコントロールボタンで、試薬の在庫が管理できます。

• **詳細** をクリックして、選択した種類の個々の試薬パッケージの内容を表示して、オプションを設定してください。

詳細については、8.3.2試薬または試薬システムの詳細を参照してください。

• ハンディスキャナーで ID を自動認識できない場合は、ID を入力をクリックして、ID 手動入力ダイアログで試薬の在庫をシステムに追加できます(BOND-III および BOND-MAX のみ)。

詳細については、8.3.3試薬と試薬システムの登録を参照してください。

- 表に表示されている試薬や試薬システムのレポートを作成するには、詳細レポートをクリックします。8.3.4 在庫詳細レポートを参照。
- 特定の期間内における試薬の使用状況に関するレポートを作成するには、**試薬の使用**をクリックします。

8.3.5 試薬の使用レポートを参照。

また、試薬の在庫を8.3.1 試薬量の決定追跡する方法の一般的な説明は、BONDも参照してください

8.3.1 試薬量の決定

BONDシステムでは、試薬トレイ内のコンテナ中の試薬量の決定に、最初の容量とその後の使用量に基づいて量を決定する方法と、BOND-IIIおよびBOND-MAXでは液体レベルセンサー(LLS)を使用して、BOND-PRIMEでは超音波液体レベルセンサー(uLLS)を使用して直接測定する方法の、2つの方法を使用します。

量を計算する方法では、試薬が分注されると量を減じて、試薬が充填されると(オープン容器) 試薬量を加えるので、最初の試薬量の精度に左右されます。試薬が蒸発したりこぼれた場合、誤差が生じることがあります。

BOND-MAX および BOND-III のLLS システムは、吸引プローブに組み込まれています。吸引プローブを容器内に挿入すると、試薬の深さを検出し、試薬の分量を測定します。このLLSによる容量確認システム(「ディップテスト」)は、計算した分量に問題が認められたときに使用します。なおシステム処理の不必要な遅延を避けるために、通常はLLSを使用しないようにしてください。試薬が蒸発したり、容器が別のシステムで使用されることがあります。こうしたデフォルトのディップテストは、テストによって処理に遅れが生じない場合に実行されるので、予定されていた処理が実行される際に当初利用可能になると思われた試薬の量が、実際には十分ではなかったということもありえます。この場合、警告が発せられるので、コンテナ(オープンコンテナのみ)を充填するか、十分な量の代替試薬が手元にあることを確認しておきます(8.1.1.4 試薬の代用を参照)。

BOND-PRIME の uLLS は、ARC プローブに組み込まれています。相違がある場合は、BOND-MAX および BOND-III で実行する場合と同じ方法で uLLS によってディップテストが実行されます。

もしくは、毎回処理を行う前に、BONDシステムでディップテストコンテナを設定することができます。これは、オープンコンテナと希釈済みコンテナと試薬システムとで、別々に設定されます。この設定は、処理の開始から終了まで十分な量の試薬があることを確認するためのものですが、ディップテストが実行される分だけ処理が遅れます。これらのオプションを管理者の設定 > 施設設定ペインで設定します(10.5.1 施設設定を参照)。

試薬 コンテナを過剰に充填しないでください。試薬 コンテナを過剰に充填すると、ディップテスト時に空として報告されます。

8.3.1.1 検出システムの容量レポート

BOND 検出システムで報告される容量を、各容器で報告される容量に対応させるために(検出システムに使用できるスライド数を見積もることができます)、システム容量は1個の容器についてmLで報告されます。ただし検出システムには容量の異なる容器が含まれているため、容量レポートに一定の規則を適用する必要があります(このセクションで説明します)。

ただしこの規則は、Oracleシステム(残 nラン回数でカウント)やクリーニングシステム(残 n0クリーニング数でカウント)には適用されません。

検出システムでは、容量の報告はシステム内の最大の容器との比較によって行われます。例えば、最大容器が30 mL 入りであれば、システム容量は30mL と比較して報告されます。BOND ソフトウェアでは新しいシステムの全容器がフルであることを前提としています。したがって最大容器30 mL のシステムは、最初の登録時に30mL 容量を備えているとして報告されます。

試薬が使用されると、報告値は、相対容量の最も低い容器の容量を示します。この容器の容量がシステムで最大の容器の容量と異なるときは、この値が最大容器の容量に正規化されます。例えば、複数の 30mL 容器と2つの2.4mL 容器を備えたシステムがあるとし、2.4mL 容器の一方に最初の容量と比較して最も少ない容量が入っているとします。残量が1.2 mLとすれば(すなわち最初の容量の半分)、システムの全体容量は30 mLの半分(15 mL)として報告されます。

8.3.1.2 研究試薬システムのテスト残回数の報告

各試薬システムは一定回数のテストしか行なえません (たとえばデフォルトの試薬量が150 μ Lの場合は200回)。

この研究試薬システムでスライドが染色されるたびに、テスト残り回数が減少していきます。

テスト残り回数がゼロになると、システムには空とマークされます。

8.3.2 試薬 または試薬 システムの詳細

試薬や試薬システムの個々のパッケージの詳細を表示するには、「試薬の在庫」表の試薬の種類をダブルクリックするか、または種類を選択してから**詳細**をクリックします。

図 8-4:試薬の在庫詳細ダイアログ

在庫詳細ダイアログボックスには、選択した試薬やシステムの個々のパッケージが表示されます。ダイアログフィールドおよびオプションは、試薬パッケージのタイプとサプライヤーによって異なります。初期設定では、利用可能で有効期限内の試薬パッケージのみが表示されます。また、有効期限内の空のパッケージや先月に有効期限切れとなった全てのパッケージを表示することができます。ダイアログで、必要に応じて利用可、無しまたは有効期限切れを選択します。

全 ての試薬 パッケージのタイプについて、試薬 パッケージ名が表示されます。また、BOND 試薬には、再注文できるようにカタログ番号が表示されます。BOND 試薬(システムを除く)にはさらに、パッケージ名 とパッケージのサイズが表示されます。

BOND試薬とシステムでは最低在庫のフィールドに、試薬の再注文がプロンプトされる在庫量が表示されます (8.3.2.1 最低在庫の設定変更を参照)。

ハンディスキャナーで、登録した試薬 コンテナや試薬システムの側面のバーコードまたは2次元バーコードをスキャンすると、在庫詳細のダイアログボックスが表示されます。スキャンされた在庫品目は、詳細表で強調表示され、適宜、自動的に、表示フィルター(「利用可」、「無し」、「有効期限切れ」)が設定されます。

ダイアログの表には、各試薬パッケージについて次の情報が表示されます。

UPI 個別のパッケージID (8.1.1.3 試薬の識別を参照)。

ロット番号 パッケージのロット番号

有効期限パッケージの有効期限。この日付を過ぎたらパッケージは使用不可。

登録日 パッケージが最初にBONDシステムに登録された日付。 初回使用 パッケージが最初にBONDシステムで使用された日付。

空としてマーク パッケージが空としてマークされた日付。ソフトウェアによる自動設定、または、手動

設定が可能です(8.3.2.3 パッケージを空としてマーク、または残量ありとしてマークを

参照)。

初期量(mL) 一杯に入った新規パッケージ内の試薬量。

試薬システムには表示されません。

量(mL) 容器内の現在の試薬の容量。検出システムについては、8.3.1.1検出システムの容

量レポートを参照してください。

再充填 (mL) オープンコンテナで、容器の再充填に使用できる試薬の残量。

クリーニング残回数 クリーニングシステムで、残り試薬で実行できるクリーニング数。

処理回数(残) Oracleシステムにおいて、残り試薬で実行できるラン回数。

「在庫詳細」ダイアログのボタンにより、(パッケージタイプに適した)様々な在庫詳細を設定でき、さらに特定の試薬やシステムの詳細レポートを作成できます。以下のセクションでは、設定とレポートのオプションについて説明します。

8.3.2.1 最低在庫の設定変更

定義済みのLeica Biosystemsの試薬と試薬システムには、「最低在庫レベル」を設定することができます。試薬の総在庫量が設定レベル未満となると、**試薬の在庫**画面の試薬が赤で強調表示され、試薬またはシステムを再注文するようプロンプトが表示されます。

最低在庫の設定を変更するには、最低在庫レベルを設定をクリックします。ポップアップダイアログの最低在庫フィールドに、必要な最低在庫レベルを入力します。パッケージのタイプに応じて、mL、処理数、またはクリーニング数を入力します。OKをクリックします。

8.3.2.2 試薬レポート

選択した試薬または試薬システムのレポートを作成するには、詳細レポートをクリックします。詳細については、8.3.4 在庫詳細レポートを参照してください。

8.3.2.3 パッケージを空としてマーク、または残量ありとしてマーク

試薬パッケージを空としてマークすることができます(たとえば、使い切る前に廃棄する場合など)。これを実行するには、表からパッケージを選択して、**空としてマーク**をクリックします。すると、**空としてマーク**フィールドに現在の日付が表示されます。

「空としてマーク」した試薬パッケージを元に戻すには、表からそれを選択し、**空でないとしてマーク**をクリックします。この操作は、パッケージが処理モデュールにロードされていないときのみに行うことができます。パッケージには、空とマークする前の試薬量が示されます。

「空としてマーク」した項目を表示するには、表の下の「無し」のラジオボタンを選択します。

8.3.2.4 オープン試薬容器の再充填

特定の試薬 を40 mL まで、オープン試薬 コンテナは BOND 再利用できます。容器の最大容積よりも少ない量で再充填する場合、コンテナに補充する回数に制限はありません。

オープン容器の再充填の際は、以下の指示に従ってください。

- 1 容器に希望量の試薬を充填します。
- 2 容器をスキャンし(8.3.3 試薬と試薬システムの登録を参照)、**再充填**をクリックしてください。 容器内の試薬量が40 mLを超えると、「再充填」ボタンは使用できなくなります。
- 3 新しい試薬の有効期限を設定します。

オープンコンテナに充填すると(初回、または再充填)、ソフトウェアによりコンテナの最大量(試薬を初めて登録した場合にはユーザーが指定した容量(ml)、または現在量+許容範囲の再充填容量の残量)が充填されたと認識されます。レポートされる容量は、必要に応じて、ディップテストを実施したときに修正されます。ただ容器が使用されるまで修正されません。

各オープンコンテナは、最初に登録したときに、特定の試薬にロックされます。必ず同じ試薬で容器を充填してください。

8.3.3 試薬と試薬システムの登録

試薬パッケージを登録すると、在庫に追加されます。パッケージを登録する前に、試薬が「**試薬の設定」**画面に表示されていることを確認してください。

BOND 処理 モジュールで試薬 パッケージを使用 する前に、登録 する必要 があります。

未登録の試薬コンテナを処理モデュールにロードすると、ソフトウェアが認識できず、**システム状態**画面のその 試薬位置に情報アイコンが表示されます。

BOND-PRIME 処理 モジュールにロードされている試薬 コンテナのステータスについては、別書の BOND-PRIME ユーザーマニュアルを参照してください。

BONDソフトウェアによって試薬の使用状況が追跡され、試薬の交換が必要になるとアラートが表示されます。

調整済みのBOND試薬容器は、再充填できません。BOND ソフトウェアによって容器は使用済みと認識され、再使用が拒否されます。

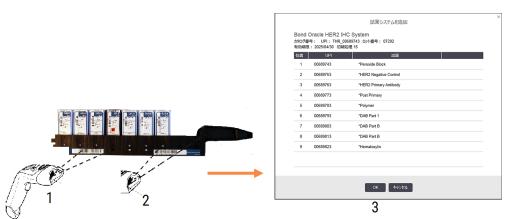
BONDが、スキャンされ登録された新規試薬パッケージを認識しない場合、最新のBONDデータ定義(BDD)ファイルがインストールされてない可能性があります。その場合、ウェブサイトで最新のBDDファイルを確認して、その「データバージョン」がBOND についてダイアログに表示されるものより新しい場合には、(管理者のBDDの更新画面を通じて)ダウンロードしてインストールしてください。最新のBDDファイルをインストールしたら、クライアントを再起動し、新規試薬コンテナまたは試薬システムの登録を再試行してください。

様々なタイプの試薬パッケージの登録方法については、次のセクションで説明します。

- 8.3.3.1 試薬システムの登録
- 8.3.3.2 BOND 希釈済抗体の登録
- 8.3.3.3 希釈済抗体以外の登録
- 8.3.3.4 ID 手動入力

8.3.3.1 試薬システムの登録

BOND 検出システムや洗浄システムを登録するには、試薬トレイの側面にある2つのバーコードをスキャンします。



一部の試薬システム、たとえば、1個 または2個の試薬から構成されているものは、トレイに1つのバーコードしかないものもあります。

BOND-PRIME 試薬システムにはトレイ側面に2次元バーコードが1つあります。

ソフトウェアに試薬システムを追加ダイアログが表示されます。

レーザーハザード。重度の眼障害を生じるおそれがあります。レーザー光線を直視しないでください。

図 8-5:BOND検出システムの登録

ダイアログ中の詳細がパッケージの詳細に一致することを確認し、OKをクリックしてください。

試薬システムのパーツであるコンテナを登録しないでください。

8.3.3.2 BOND 希釈済抗体の登録

BOND 希釈済抗体パッケージを登録するには、容器前面のバーコードをスキャンします。ソフトウェアにより「試薬パッケージを追加」ダイアログが表示されます。

図 8-6:BOND 試薬パッケージの登録

ダイアログ中の詳細がパッケージの詳細に一致することを確認し、追加をクリックしてください。

8.3.3.3 希釈済抗体以外の登録

BOND 希釈済みパッケージに入っていない試薬は、BOND システムやBONDオープンコンテナやタイトレーションキットで使用できます。希釈済みではない試薬を用意したら、 $7\,\text{mL}$ または $30\,\text{mL}$ のオープンコンテナ、もしくは $6\,\text{mL}$ のタイトレーションコンテナに充填します。登録方法は BOND 試薬とほぼ同じです。

1 試薬がシステムで作成されていることと、優先試薬であることを確認します。優先になっていないユーザー定義の試薬は、在庫に登録することはできません(参照)。(8.2.1 試薬の追加または編集を参照)。

BOND 酵素前処理キットで作成された酵素は、システム内であらかじめ定義されているため、手動で作成する必要はありません。

- 2 オープンコンテナまたはタイトレーションコンテナの前面のバーコードをスキャンして、オープンコンテナを追加ダイアログを開きます。
- 3 試薬名ドロップダウンリストから試薬の名前を選択します。(サプライヤー名は、試薬名の横にある括弧内に示してあります。)

リストには、システムで作成した以外のBONDアクセサリー試薬とマーカーが全て含まれる他に、BOND酵素処理キットで調整可能な、定義済みの酵素(4つ)が表示できます。システムで試薬を作成しなかった場合は、オープンコンテナを追加ダイアログをキャンセルして、まずこれを作成してください(上記のステップ1を参照)。

- 4 試薬のサプライヤーの添付文書を基に、試薬のロット番号を入力します。
- 5 カレンダーコントロールの有効期限を設定するには、**有効期限**フィールドをクリックします(日付を入力することもできます)。

D/M、DD/MM または DD/MMM などの部分的な日付を入力することができます。今年度が入力されます。ただし、MM/YYYY または MMM/YYYY など、年を入力した場合、その月の最初の日が入力されます。

無効な日付を入力した場合、**有効期限**フィールドの周囲に赤い枠が現れ、検証エラーメッセージが表示されます。

有効期限フィールドの外をクリックすると、有効な日付入力は、自動的に、システムの日付フォーマットに一致するよう再フォーマットされます。無効な日付を入力する前に、有効な日付を1つまたはそれ以上入力した場合は、フィールド以外の場所をクリックすれば、最後に入力した有効な日付にリセットされます。

6 試薬を登録するには、**OK**をクリックします。

8.3.3.4 ID 手動入力

BOND システムが試薬のバーコードを読み取れないときは、試薬在庫画面で次の手順を行ってください。

- 1 IDを入力をクリックしてください。
 - BOND ソフトウェアに「手動ID入力」ダイアログが表示されます。
- 2 コンテナの前面の長いバーコードに対応する数字、または2次元バーコードに対応する数字を、ダイアログの一番上の行に入力します。
- 3 検証をクリックします。
 - 検出システムに関して、バーコードが複数ある場合は、各バーコードに対応する数字を入力した後に 検証するをクリックします。
- 4 バーコードが正しいことを検証すると、ソフトウェアは、**試薬パッケージを追加**ダイアログに表示します。
- 5 パッケージの詳細を検証するか、必要に応じて「**試薬パッケージを追加**」ダイアログに必要な詳細を追加します。**OK**をクリックすると、パッケージが登録されます。

8.3.4 在庫詳細レポート

試薬在庫画面の表に表示されている試薬または試薬システムの在庫に関する詳細レポートを作成することができます。作成されるレポートには、表示されている各試薬またはシステムの残り総量などの情報が含まれます。総量が最低在庫レベルよりも少ないとき(8.3.2.1 最低在庫の設定変更を参照)は、レポートに「低」とフラグ付けされます。

画面下のフィルターを設定して、必要な試薬または試薬システムを表示します。**詳細レポート**をクリックすると。レポートが作成され、新しいウィンドウに表示されます。

「試薬の在庫」レポートの右上に、以下の情報が表示されます。

フィールド	内容
施設	管理者の設定 > 施設設置画面の施設フィールドに入力した施設の名前 - 10.5.1 施設設定 を参照
被検体	レポートで試薬または試薬システムの選択に使用されるフィルター設定。

表の各試薬について、レポートの本文には以下が表示されます。

- 名前
- 現在の総量(最低在庫よりも少ないときはフラグが付きます)
- カタログ番号(BOND希釈済み容器)、または「オープン」(オープン容器)
- タイプ(一次抗体、プローブ、アクセサリー、または試薬システムのタイプ)
- サプライヤー

各試薬パッケージについて、レポートは以下を表示します。

- UPI
- ロット番号
- 有効期限
- 登録日
- 初回使用日
- 最終使用日
- 残量

レポートウィンドウおよび印刷オプションの詳細については、3.7レポートを参照してください。

8.3.5 試薬の使用レポート

試薬の使用レポートには、試薬の使用量と、この試薬を用いて指定の期間内に処理された検査数が表示されます。このとき個々の容器の内訳と試薬の合計量が報告されます。

レポートには、指定の期間内に使用された全試薬が表示されます(現在「**試薬在庫」**画面に表示されていない試薬を含む)。ただし試薬システムの使用状況については表示されません。

BOND-PRIME バルク試薬の使用は追跡され、レポートに表示されます。

試薬の使用 をクリックして日付選択ダイアログを開き、レポートでカバーされる期間を設定します。**からとまで**の日時を設定し(日付と時間のセレクタの使用方法(215ページのセクション)を参照)、**作成**をクリックします。レポートが作成され、新しいウィンドウに表示されます。

試薬の使用レポートの右上に、下表の情報が表示されます。

フィールド	内容
施設	管理者の設定 > 施設設置画面の施設フィールドに入力した施設の名前 - 10.5.1 施設設定 を参照
期間	レポートの期間(「から」~「まで」を日付表示)

特定の期間内に使用された各試薬について、以下の情報が表示されます。

- 名前(試薬の略名)
- 各使用容器のUPI
- 各使用容器のロット番号
- 各使用容器の有効期限
- 処理 されたスライド数(容器ごと、試薬使用合計量)
- 期間内に使用された試薬量(容器ごと、試薬使用合計量)

レポートウィンドウおよび印刷オプションの詳細については、3.7レポートを参照してください。

8.4 試薬パネル画面

パネルとはユーザーが定義したマーカーセットです。パネルを使用して、複数のスライドをすばやくシステムに追加できます。

パネルは通常のシングル染色スライドと並行二重スライドにのみ使用できます。連続染色スライドの設定には使用できません。パネルの作成には監督者の権限が必要です。

試薬パネル画面を表示するには、ファンクションバーの**試薬の設定**のアイコンをクリックし、続いてパネルタブをクリックします。

詳細については以下を参照してください。

- 8.4.1 パネルの作成
- 8.4.2 パネルの詳細の表示または編集
- 8.4.3 パネルの削除

8.4.1 パネルの作成

パネルを作成するには、次の指示に従ってください(監督者の権限が必要です):

1 パネルを追加をクリックします。

試薬のパネルのプロパティダイアログが表示されます。

試薬のパネルのプロパティ パネル名: CD Panel パネルは以下の通りです: 使用できるマーカー: *AccuCyte CTC Pan-Cytokeratin *CD5 (4C7) Leic.. テスト RareCvte *CD20 / Ki67 Leica Microsystems *CD5 (4C7) Leica Microsystems *DNA Positive Control Probe Leica Microsystems *Double Probe Other キャンセル

図 8-7:試薬のパネルのプロパティダイアログ

試薬のパネルのプロパティでは、右側の表にパネルの内容が表示され、左側の表に使用できるマーカーが表示されます。

2 ダイアログの上にあるパネル名フィールドに名前を入力します。 名前のないパネルは保存できません。 3 パネルにマーカーを追加するには、使用可能な抗体のリストから項目を選択するか、左側の表からプローブを選択して、>>をクリックします テスト組織 。。

陽性組織コントロールを追加するには、マーカーをクリックして、をクリックします

陽性組織

陰性組織コントロールを追加するには、マーカーをクリックして、>> をクリックします

陰性組織 >

4 項目をパネルから削除するには、右側の表から項目を選択して、をクリックします

パネルにはテスト組織を含んでいる必要があります。テスト組織のないパネルを保存することはできません。

5 パネルが正しければ、**OK**をクリックして詳細を保存してください。 パネルを保存したくない場合は、**キャンセル**をクリックしてください。

8.4.2 パネルの詳細の表示または編集

パネルの詳細を表示するには**試薬パネル**画面の左にある表でパネルを選択します。画面の右にある表に、パネルのマーカーが表示されます。パネルを編集するには、パネルのプロパティをクリックし、8.4.1 パネルの作成の説明に従って編集します。

8.4.3 パネルの削除

システムからパネルを削除するには、試薬パネル画面の表からパネルを選択し、パネルを削除するをクリックします。削除を確認するメッセージが表示されます。

パネルの削除は、慎重に行ってください。削除したパネルの詳細は、回復できません。

タスライド履歴(BOND コントローラー上)

スライド履歴画面は、BONDシステム上で、処理予定のスライド、現在処理中のスライド、または処理が完了したスライドの詳細を表示します。

スケジュールされたものの処理が開始する前に中止された(トレイのロックが解除された)処理は、そのスライド記録が履歴リストから削除され、トレイ全体が1列で表示され、ステータスは「拒否」となります。これらの処理については、イベントレポートと処理に関する詳細なレポートが作成されます。

本章の構成は以下のとおりです。

- 9.1 スライド履歴画面
- 9.2 スライドの選択
- 9.3 スライドのプロパティとスライドの再処理
- 9.4 処理イベントレポート
- 9.5 処理詳細レポート
- 9.6 ケースレポート
- 9.7 プロトコールレポート
- 9.8 スライドサマリー
- 9.9 データのエクスポート
- 9.10 簡単なスライド履歴

9.1 スライド履歴画面

スライド履歴の詳細を表示したり、処理イベントや処理の詳細やケースレポートを作成するには、 ファンクションバーからスライド履歴アイコンを選択します。

図 9-1: スライド履歴画面

イドフィルタ	日付範囲	から:	2013/01/01	17:08	まで: 2017/04/05	17:0	08 🗘	過去7日間	使用	
処理日	処理 ID	スライド ID	マーカー	患者名	ケース ID	タイプ	ステータス			
2013/08/27	84	00000288	*Neg	Chirs P. Bacon	CS205 - 255790	テスト	(実行中)			
2013/08/27	84	00000289	*Neg	Chirs P. Bacon	CS205 - 255790	テスト	(実行中)			
2013/08/27	84	00000241	*Neg	Chirs P. Bacon	CS205 - 255790	テスト	(実行中)			
2013/08/27	84	00000291	*Neg	Chirs P. Bacon	CS205 - 255790	テスト	(実行中)			
2013/08/27	84	00000292	*Neg	Chirs P. Bacon	CS205 - 255790	テスト	(実行中)			
2013/08/27	84	00000290	*Neg	Chirs P. Bacon	CS205 - 255790	テスト	(実行中)			
2013/08/27	84	00000293	*Neg	Chirs P. Bacon	CS205 - 255790	テスト	(実行中)			
2013/08/27	84	00000294	*Neg	Chirs P. Bacon	CS205 - 255790	テスト	(実行中)			
2013/08/27	84	00000295	*Neg	Chirs P. Bacon	CS205 - 255790	テスト	(実行中)			
2013/08/27	84	00000296	*Neg	Chirs P. Bacon	CS205 - 255790	テスト	(実行中)			
2013/08/26	90	00000399	*CD5	Cherry Dale	CS3225 - 527991	テスト	(実行中)			
2013/08/26	90	00000398	*Tyros	Jacob Dean	CS3225 - 527990	テスト	(実行中)			
2013/08/26	90	00000396	*CD20	Jacob Dean	CS3225 - 527990	テスト	(実行中)			
2013/08/26	90	00000395	*CD5	Jacob Dean	CS3225 - 527990	テスト	(実行中)			
2013/08/26	90	00000394	*Tyros	Amanda Francis	CS3224 - 527909	テスト	(実行中)			
2013/08/26	90	00000391	*CD5	Amanda Francis	CS3224 - 527909	テスト	(実行中)			
2013/08/26	90	00000400	*CD20	Cherry Dale	CS3225 - 527991	テスト	(実行中)			
2013/08/26	90	00000397	*MelA	Jacob Dean	CS3225 - 527990	テスト	(実行中)			
2013/08/26	90	00000393	*MelA	Amanda Francis	CS3224 - 527909	テスト	(実行中)			

スライド履歴リストには、リストの上部に日付範囲フィルターで定義された期間内に処理されたスライド、また はスライドID フィルターで見つかった特定のスライドが表示されます(9.2 スライドの選択を参照)。

画面に表示される処理 ID 番号は、必ずしも順番通りに表示されない可能性があります。BOND-III および BOND-MAX 処理 モジュールでは、処理 ID 番号は、スライドトレイがロックされた際に割り当てられるので、(処 理を開始する前に)ロックされたトレイがアンロックされた後でもう一度ロックされると、処理ID番号が大きくな り、最初のロック後に割り当てられた番号は実質的にスキップされます。

BOND-PRIME 処理モジュールでは、処理 ID 番号は各スライドに割り当てられます。

スライドのカラーコードは、スライド設定画面で使用されたものとほぼ同じです(6.5.1 スライドフィールドとコント ロールの説明を参照)。

- 白: **スライドを追加** ダイアログで作成 されたスライド
- 黄色: スライドの識別ダイアログで作成されたスライド(6.8 スライドとケースの臨時作成を参照)
- 薄い灰色:LISスライド
- 赤:優先 LIS スライド(11.2.5 優先 スライドを参照)

リストには、各スライドについて、以下の値が表示されます。

- 処理日(スライド処理の開始日)
- 処理ID
- スライドID
- マーカー(一次抗体またはプローブの名前)
- 患者名
- ケースID
- タイプ(テスト組織、陽性または陰性コントロール組織)
- ステータス(実行中、終了、不測のイベントの発生の有無、または処理開始前に中止されたバッチについては「拒否」表示)

ステータスに「完了(通知)」と表示されたときは、レポートを精査して、不測のイベントが染色に影響を与えていないかを確認してください。なお不測のイベントは太字で示されます。

スライドに関する情報を表示するには、リストでスライドを選択し、次に、リストの下のいずれかのボタンをクリックします。

9.2 スライドの選択

定義された期間内に処理されたスライドを全て表示して、スライド履歴画面のリストのスライドをフィルタリングするか、スライドIDを入力して特定のスライドを表示させます。ドロップダウンメニューをクリックし、使用したいスライドフィルタを選択します。

日付範囲スライドフィルター

図 9-2:日付範囲 スライドフィルター

画面でレポート期間を指定するには、**日付範囲**スライドフィルターを使用します。するとその期間内に処理されたスライドのみが表示されます。日付(「から」~「まで」)、および必要に応じて時刻を設定し、表示までの時間を定義します。次に、**適用**をクリックすると、スライドが表示されます。

定義された期間内に、1000枚以上のスライドを処理した場合、最初の1000枚のみが表示されます。完全な詳細を表示するには、スライドデータをエクスポートする必要があります。9.9データのエクスポートを参照。

「まで」フィールドの初期設定は現在の日時に、「から」フィールドはそのちょうど1週間前に設定されます。設定を変更した場合、過去7日間をクリックすると、この設定に戻すことができます。

日付と時間のセレクタの使用方法

日、月、年を設定するには、カレンダーアイコンをクリックして日付を選択します。カレンダータイトルバーの矢印をクリックして、月をスクロールします。もしくは、タイトルバーの中心をクリックして別の月を選択するか、年をスクロールします。あるいは、フィールドに直接日付を記入することもできます。

時刻を設定するには、時刻フィールドをクリックし上下ボタン(またはキーボードの上下矢印キー)を使用します。カーソル位置によって、1時間ごと、10分後と、1分後とを選択できます。もしくは、フィールドに直接日付を記入することもできます。

スライドID スライドフィルター

特定のスライドに関する情報を検索するには、**スライドID** スライドフィルターを使用します。**スライドID** フィールドにスライドID を入力して、**使用**をクリックします。

9.3 スライドのプロパティとスライドの再処理

スライド歴 履 リストでスライドのプロパティを表示 させるには、スライドを選択してから、スライドのプロパティをクリックします (もしくはダブルクリックします)。すると、スライド設定画面(6.5.4 スライドの編集)から開くダイアログと同じダイアログが開きます。

「スライドのプロパティ」ダイアログを、スライド履歴画面から開いた場合は、ダイアログ内の患者やテストの情報は編集できません(スライドが処理済み、または処理中のため)。ただしコメントフィールドでコメントを追加したり、スライドを再処理することはできます。9.3.1 スライドの再処理を参照。

9.3.1 スライドの再処理

スライドの結果が十分でない場合には、再処理するようフラグを付けることができます。**スライドのプロパティ**ダイアログからスライドを再処理するには、以下の手順に従ってください。

- 1 スライドをコピーをクリックします。 スライドのプロパティダイアログが、フィールドが編集可能なスライドを追加ダイアログに変化します。
- 2 必要な変更を行い、スライドを追加をクリックします。
- 3 コピーしたスライドのケースと患者と医師を確認して、**スライド設定**画面にスライドを追加します。 さらにスライドを追加するときは、**スライドを追加**ダイアログを開いたままにします。
- 4 閉じるをクリックしてスライド履歴画面に戻ります。
- 5 新し、作成したスライドは、通常の方法で処理できます。

9.4 処理イベントレポート

このレポートはスライド履歴画面から作成され、選択されたスライドが使用したトレイの全スライドで発生した全イベントを表示します。レポートを作成するには、処理イベントをクリックします。

BOND-PRIME 処理 モジュールでは、レポートに各 スライドのイベントが表示 されます。

BOND-III または BOND-MAX では、スライドの処理中に、イベントレポートを作成することもできます。システム状態またはプロトコールの状態画面で適宜処理またはリストを選択し、メニューから処理イベントを選択します。スライドに関する通知の発生原因となったイベントは太字で表示されるため、容易に見分けられます。スライド通知を開始したイベントは太字で表示されるため、容易に見分けられます。

イベントレポートの右上に、以下の情報が表示されます:

フィールド	内容
PMシリアル番号	処理に使用される処理モデュールのシリアル番号
処理モデュール	処理に使用される処理モデュールの名前
スライドトレイ	処理に使用されるスライド染色ユニットの番号(BOND-III またはBOND-MAX)
ARCモジュール	処理に使用されるBOND-PRIME ARC モジュールの番号
分注量	分注された試薬量(6.5.8分注量とスライド上の組織の位置を参照)
開始時間	処理の開始日時
処理進行	処理の進行状況(処理が完了したか、または処理中か)を示す
染色モード	使用染色モード(例えば、シングル通常)

処理中の全スライドのスライドラベルの画像は、レポートの一番上に表示されます。レポートの本文には、処理の時刻、イベント番号、イベントの説明が記載されます。イベント番号は、必要に応じて、Leica Biosystems によってエラーのトラッキングに使用されます。

レポートウィンドウおよび印刷オプションの詳細については、3.7レポートを参照してください。

9.5 処理詳細レポート

このレポートは**スライド履歴**画面から作成され、現在選択しているスライドと同じトレイにある各スライドに関する詳細を表示します。トレイが処理を終了してアンロックされなければレポートは作成されません。レポートを作成するには、**処理の詳細**をクリックします。このレポートの右上に、下表の情報が表示されます。レポートの右上に、下表の情報が表示されます。

フィールド	内容
PMシリアル番号	処理に使用される処理モデュールのシリアル番号
PM名	処理に使用される処理モデュールの名前
スライドトレイ	処理に使用されるスライド染色ユニットの番号(BOND-III またはBOND-MAX)
染色の位置	処理に使用されるBOND-PRIME ARC モジュールの番号
開始時間	処理の開始日時
実行起動者	実行を起動した人物のユーザー名。
スライドをロードしたユーザー	スライドをロードしたユーザーの名前
スライドをアンロードしたユーザー	スライドをアンロードしたユーザーの名前

レポートの本文には、処理中の各スライドについて、スライドラベルの画像と、以下の情報が表示されます。

フィールド	内容
スライ ドID	BOND システムでは、各 スライドに固有のIDを割り当てます
スライド作成者	スライドを作成した人物のユーザー名。「LIS」の場合もあり。
ケース番号	BOND ソフトウェアが作成した、固有のケース識別子
組織の種類	テスト組織、陽性コントロール、陰性コントロール
分注量	分注された試薬量(6.5.8分注量とスライド上の組織の位置を参照)
患者名	患者ID
ケースID	スライド設定中に入力されたケース識別子
染色プロトコール	使用された染色プロトコール
調製	使用された調製プロトコール(該当する場合)
加熱プロトコール	使用された加熱処理プロトコール(該当する場合)
酵素プロトコール	使用された酵素処理プロトコール(該当する場合)
ディネーチャー	使用 されたディネーチャープロトコール (ISHのみ)(該当する場合)
ハイブリダイゼーション	使用 されたハイブリダイゼーションプロトコール (ISHのみ)(該当する場合)

フィールド	内容
LISリファレンス 2~7]	LIS-ipをインストールしたシステムにおける、追加LISリファレンス情報(11.2.6 LISスライドデータフィールドを参照)
染色	使用染色モード(例えば、シングル通常)
終了時のステータス	スライドの状況(処理中、完了、またはスコアリング済み)を示します.またイベントの通知の有無をレポートします
コメント	コメントは、「スライドのプロパティ」からいつでも入力できます。
サインオフ:	サインオフは、監督者が各スライドをサインオフできるようにするための、印刷済み用紙レポート上の専用スペースです。
使用した試薬(あるいは、	混合試薬の成分を含む優先キット)
UPI	このスライドに使用した全試薬または優先キットの固有のパッケージ識別子
名前	このスライドに使用した全試薬または優先キットの名前
正式名	インストールされたLISインテグレーションパッケージシステムの正式名
ロット番号	このスライドに使用した全試薬または優先キットのロット番号
	BOND-PRIMEのバルク試薬ロット番号が含まれます。
有効期限	このスライドに使用した全試薬または優先キットの有効期限

レポートウィンドウおよび印刷オプションの詳細については、3.7レポートを参照してください。

9.6 ケースレポート

このレポートは、現在選択されているスライドと同じケースの各スライドの詳細を示します。レポートは、**スライド設定**画面や**スライド履歴**画面、および**スライドの識別**ダイアログから作成できます。ケースレポートの右上には、下表の情報が表示されます。

フィールド	内容		
ケースID	スライド設定中に入力されたケース識別子		
患者名	患者名		
ケースコメント	ケースの追加情報		
医師	患者を担当した医師名または病理専門の委託医師名		
医師のコメント	医師の追加情報		
作成	ケースの作成日時		
ケース番号	BOND システムが作成した、固有のケース識別子		

レポートの本文には、ケース内の各スライドについて以下の情報が表示されます。

フィールド	内容		
スライドID	BOND システムでは、各スライドに固有のIDを割り当てます		
スライド作成者	スライドを作成した人物のユーザー名。「LIS」の場合もあり。		
処理	スライドが処理された処理の番号		
実行起動者	実行を起動した人物のユーザー名。		
組織の種類	テスト組織、陽性コントロール、陰性コントロール		
分注量	分注された試薬量(6.5.8分注量とスライド上の組織の位置を参照)		
染色プロトコール	使用された染色プロトコール		
調製	使用された調製プロトコール(該当する場合)		
加熱プロトコール	使用された加熱処理プロトコール(該当する場合)		
酵素プロトコール	使用された酵素処理プロトコール(該当する場合)		
ディネーチャー	使用 されたディネーチャープロトコール (ISHのみ)(該当する場合)		
ハイブリダイゼーション	使用されたハイブリダイゼーションプロトコール (ISHのみ)(該当する場合)		
LIS リファレンス(2~7)	LIS-ipをインストールしたシステムにおける、追加LISリファレンス情報(11.2.6 LISスライドデータフィールドを参照)		
染色	使用染色モード(例えば、シングル通常)		
PMシリアル番号	スライドを処理した処理モジュールのシリアル番号		
染色の位置	スライドが処理された位置		
終了時のステータス	スライドの状況(処理中、完了、またはスコアリング済み)を示します。またイベントの通知の有無をレポートします		
コメント	コメントは、「スライドのプロパティ」からいつでも入力できます。		
サインオフ:	サインオフは、監督者がスコアやコメントをサインオフできるようにするための、印刷済み用紙レポート上の専用スペースです。		
使用試薬			
UPI	このスライドに使用した試薬の固有のパッケージ識別子		
名前	このスライドに使用した試薬の名前		
正式名	インストールされたLISインテグレーションパッケージシステムの正式名		
ロット番号	このスライドに使用した試薬のロット番号		
	BOND-PRIMEのバルク試薬ロット番号が含まれます。		
有効期限	このスライドに使用した試薬の有効期限		

レポートウィンドウおよび印刷オプションの詳細については、3.7レポートを参照してください。

9.7 プロトコールレポート

選択されたスライドに使用されたプロトコールのレポートを作成するには、スライドを選択し、**プロトコールレポート**をクリックします。スライドで処理されるプロトコールから希望のプロトコールを選択し、レポートをクリックすると、レポートが作成されます。レポートに関する説明については、7.5 プロトコールレポートを参照してください。

9.8 スライドサマリー

スライド処理のサマリーには、指定期間内に開始したスライド数が表示されます。この情報は、指定期間内に単位時間あたりに処理されたスライド数が表形式とグラフ形式で表示されます。

処理 されたスライド数 を表示 するには、**スライド履歴**画面で**スライドサマリー**をクリックして、「**スライドサマリー**」 ダイアログを開きます。

処理モデュールドロップダウンリストから、その名前または**全て**を用いて、特定の処理モデュール(全ての処理モデュール、または BOND-ADVANCE の場合、クライアントに現在接続されているポッド内の全処理モデュール)を選択します。

解析フィールドから、処理を開始したスライド数の表示のための時間単位を選択します。「日」を選択すると、一定の期間内の各日に開始されたスライド数を表示します。「月」を選択すると、一定の期間内の各月に開始されたスライド数を表示します。

までおよびからの日付を設定します。解析フィールドで設定された時間単位は、からの日付から開始し、ほぼまでの日付まで連続して使用されます。このとき下位単位も指定しなければ期間を完了できない可能性があります。

レポートをプレビューするには、作成をクリックします。

レポートウィンドウおよび印刷オプションの詳細については、3.7レポートを参照してください。

9.9 データのエクスポート

スライド履歴画面で、データのエクスポートをクリックし、選択した日付範囲内で処理が完了したすべてのスライドの詳細が記載されたファイルを作成します。エクスポートされたファイルは、標準の「カンマ区切りフォーマット」(csv)形式で、Microsoft Excelなど市販の表計算アプリケーションに簡単にインポートできます。表計算シートにインポートされたデータは、カスタマイズされたレポートとグラフにおいて、ソートや検索、作成が可能なフォーマットで表示されます(機能は表計算シートによって異なります)。

選択した日付範囲の各スライドについて、エクスポートしたファイルには以下の情報が含まれます。

- 処理日
- 処理モデュールシリアル番号
- スライドID
- 実行起動者
- マーカーUPI
- マーカーUPI 2
- 患者名
- 組織の種類(テスト、陽性または陰性コントロール)
- ステータス
- コメント
- 調製プロトコール名
- 加熱処理プロトコール名
- 加熱処理プロトコール名2
- 酵素処理プロトコール名
- 酵素処理プロトコール名2
- ディネーチャープロトコール名
- ディネーチャープロトコール名2
- ハイブリダイゼーションプロトコール名
- ハイブリダイゼーションプロトコール名2
- 染色プロトコール名
- 染色プロトコール名2
- 検出システムの名前
- 検出システムの名前2

- 処理モデュール名
- 処理ID
- スライド作成者
- 染色
- マーカー名
- マーカー名2
- ケースID
- 医師
- 分注量
- 調製プロトコールバージョン
- 加熱処理プロトコールバージョン
- 加熱処理プロトコールバージョン2
- 酵素処理プロトコールバージョン
- 酵素処理プロトコールバージョン2
- ディネーチャープロトコールバージョン
- ディネーチャープロトコールバージョン2
- ハイブリダイゼーションプロトコールバージョン
- ハイブリダイゼーションプロトコールバージョン2
- 染色プロトコールバージョン
- 染色プロトコールバージョン2
- 検出システムのシリアル番号
- 検出システムのシリアル番号2

タイトルに数字の2が付いたカラムは、連続染色スライドのみに関するもので、スライドの第二染色に関連する情報を定義します。

スライドの詳細をエクスポートするには、以下の手順に従ってください:

- 1 必要な日付範囲を選択してください(9.2 スライドの選択を参照)。
- 2 **データのエクスポート**をクリックします。
- 3 プロンプトが出たら、ファイルを保存するよう選択してください。 ファイルはダウンロードフォルダに保存されます(または**名前を付けて保存**オプションを選択して別のフォルダに保存します)。

保存されたファイルは、Microsoft Excelなど標準のスプレッドシートアプリケーションで簡単に開いて、アプリケーションで利用可能な機能を用いて操作できます。なおファイルを開くときは、ファイルパラメーターの指定が必要な場合があります。「csv」形式のファイルでは、パラメータは以下のとおりです。

- データのファイル形式はカンマやタブなどの区切り文字によって**区切られた**データになります。
- デミリッターまたは区切り文字はカンマ
- また、一般カラム形式を選択してください。

エクスポートしたスライドの詳細に記載された処理開始時間は、スライド履歴画面上の開始時間と正確には一致しません。スライド履歴画面上の開始時間は、処理スタートボタン

を押した時間ですが、エクスポートされたデータに報告されている時間は、処理モデュール内で実際に処理が開始した時間です。スライド履歴画面上の開始時間は、処理スタートボタンを押した時間ですが、エクスポートされたデータに報告されている時間は、処理モデュール内で実際に処理が開始した時間です。

9.10 簡単なスライド履歴

簡単なスライド履歴レポートには、スライド履歴画面でスライドを選択するために使用された時間範囲内に処理された(または、現在処理中の)ポッド中の全スライドに関する情報が表示されます。レポートにはサインオフエリアがあり、これは処理済みスライドの記録として使用できます。

簡単なスライド履歴レポートを作成するには、スライド履歴画面を開き、からとまでの日時を設定します。すると、画面に、その時間内に処理されるポッド内のスライドが全て表示されます(9.2 スライドの選択を参照)。 簡単なスライド履歴をクリックするとレポートが作成されます。

処理枚数の多い施設では、スライド履歴画面の初期設定の期間(1週間)に数千枚ものスライドを含むことがあります。このような多数のスライドのレポートを作成するには時間がかかります。初期設定の期間(1週間)より短い期間を定義することを検討してください。

レポートには、各スライドの詳細が表示されます(以下を参照)。

- ケースID
- 患者名
- スライドID
- マーカー
- 染色の位置

- 組織の種類
- 分注量
- ステータス
- サインオフ

↑ 管理者 クライアント(BOND コントローラー上)

BOND の全一般システム設定(プロトコールと試薬を除くは別のソフトウェアアプリケーション「管理者クライアント」で実行されます。管理者クライアントを実行できるのは管理者の役割を持つユーザーだけです。管理者の役割を持つユーザーは全機能を使用できます。

管理者には以下の画面があり、これらはクライアントの上部にあるファンクションバー上のアイコンから開きます。

- 10.1 ユーザー
- 10.2 LIS
- 10.3 ラベル
- 10.4 BDD
- 10.5 設定
- 10.6 ハードウェア

10.1 ユーザー

BOND システムのユーザーは、管理者 クライアント上のユーザーの管理画面で管理します.ユーザーを作成して、編集したり無効にしたりすることができます.ユーザーを削除することはできません(永久にシステム内に残る)が、クライアントへのアクセスを禁じることによりユーザーを無効にすることはできます.

有効なユーザーは、ソフトウェア内で様々な権利が与えられる役割を有しています。管理者の役割を持つユーザーのみが管理者を開くことができます(その中で全部の機能が実行できます)。オペレーターの役割のあるユーザーは試薬の登録、スライドの設定と処理、レポートの作成ができますが、試薬の詳細や試薬パネルやプロトコールの編集はできません。監督者の役割を持つユーザーはオペレーターの権利を全て有しているだけでなく、試薬の詳細やパネルやプロトコールの編集もできます。1人のユーザーが複数の役割を持つこともできます。

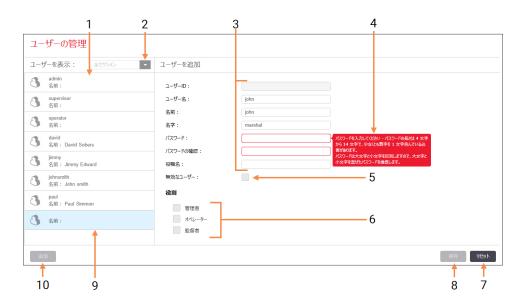


図 10-1: ユーザーの管理画面

凡例

- 1 全 BOND ユーザーをリストする
- 2 全ユーザー、または、有効または無効にした ばかりのユーザーを表示するようにフィルタリン グされます
- 3 選択されたユーザーの詳細
- 4 パスワード要件 メッセージ
- 5 **無効なユーザー** 現在選択されているユーザーを無効(または 再度有効)にします
- 6 役割 ユーザーの役割を選択します

7 リセット 未保存の変更をやり直します

きます

- 8 保存現在選択されているユーザーに関する変更を 保存します
- 9 現在選択されているユーザー 画面の右にそ の詳細が表示されます
- 10 追加 クリックすると、画面右のフィールドがクリアされ、新規ユーザーの詳細を追加することがで

新規ユーザーにはユーザー名とパスワードが必要です。クライアントと管理者にログインする際に、この2つが必要となります。一旦ユーザーを作成すると、ユーザー名は変更できませんがパスワードは変更できます。ユーザーは、いつでも、BOND ログインダイアログからパスワードが変更できます。管理者は、ユーザーの管理画面からも変更できます。パスワードの長さは4~14文字で、少なくとも1文字の数字を含んでいなければなりません。

パスワードは大文字と小文字を区別しますので、大文字と小文字を混ぜたパスワードを推奨します。パスワードが変更された場合、BOND ソフトウェアによって検証されます。最低要件が満たされるまでパスワードは保存されません。パスワードを他のスタッフと共有しないでください。また、処理モジュールから離れるときは常にアカウントをログアウトしてください。

ユーザーに関するその他の詳細 (氏名、役職名) はオプションです。これらはログやレポートに表示されます。 ユーザーID が自動的に割り当てられ、ログとレポートに表示されます。

10.2 LIS

大部分のLIS設定は、BOND LIS-ip がインストールされる際に、サービス担当者が行います。ただし、一部の設定操作は LIS設定画面でユーザーが実行することができます。この画面には、エラーメッセージのログもあります。

図 10-2:LIS 設定画面

凡例

1 ライセンス

LIS-ip ライセンスのパスワードが表示されます。

2 重複するケースID

既存のケースと同じケース IDを持つケースのアクションを設定します。

3 BOND で強制 LIS 印刷

LIS スライド全部 をBOND システムで印刷 するよう強制 する。11.7 スライドラベルを参照してください。

4 LIS をLIS スライドにアップデートできます

LISによって同じバーコードIDを持つスライドが再送信される場合、未処理のスライドが上書き(更新)されます。この設定が無効になると、BONDシステムは、LISによる同じバーコードIDを使用とする試みを全て拒否します。

5 未処理のLIS スライドのライフタイム(時間) を有効にする

入力した時間以内に処理されなかった場合、LISから受信したスライドは削除されます。

6 ログメッセージ

ログを表示するをクリックすると、リストが表示 されます(右を参照)。

7 LIS データフィールドを編集

BOND システムでのスライドデータの表示を設定します下のLIS スライドデ。

8 ログを表示する

BOND に送信されたLIS メッセージ、あるいは、BOND からLIS へのメッセージによって発生したエラーのリストを表示します。もう一度クリックすると、最新のエラーでリストが更新されます。もう一度クリックすると、最新のエラーでリストが更新されます。

ライセンス

ご利用するには、BOND の提供するパスワードとLeica Biosystems LIS-ip のライセンスが必要になります。通常、パスワードはLIS-ip の接続を設定したサービススタッフが入力しますが、そうでない場合には、**ライセンス**フィールドのみが画面に表示されます。LIS-ip 機能をオンにし、図 10-2 で示すように設定オプションやログを表示するにはパスワードを入力してください。

重複するケースID

重複するケースID 設定を使用して、既にBONDの中にある有効期限切れのLISケースや削除されたLISケースと同じケースIDを持つ、LISから受信したケースの処理方法を設定します。(LISケースが既存のBONDケース、すなわち、BONDシステムで作成されたものと同じケースIDを持つ場合、自動的に拒否されます。)次の2つのオプションがあります。

• 既存ケースの復活:新たなケースが受信され、それが既存のケースと同じ患者名を持つ場合、既存のケースが復活します(つまり、再使用されます)。同じケースIDを持つが、患者名が異なる新規ケースは、拒否されます。

医師の名前が変更された場合、新しい名前が使用されます。

• メッセージの拒否:新たなLIS ケースはBONDに転送されません。これを伝達するメッセージがLISに記録されます。LISのケースIDを変更してケースを再送信してください。

LIS ケース以外での重複するケース ID の処理については、6.3.4 ケースの重複、復活、有効期限を参照してください。LIS ケースの一般情報については、11.2.2 LIS ケースを参照してください。

LISスライドデータフィールド

BOND LIS-ip のインストールでは、LIS が、各スライドに最大7個のパラメータのBONDシステムを送信するよう設定できます。これらのパラメータは表示専用であり、スライドのプロパティダイアログのLIS タブに表示されます。これらのパラメータの基本構成は整備担当技術者によってのみ行われますが、ユーザーもパラメータフィールドを非表示にしたり、フィールドの名前を設定したりすることはできます。

表示したいフィールドを確認し、フィールド名を記入します。

10.3 ラベル

ラベルのテンプレート画面でスライドのラベルテンプレートを作成・編集したり、使用するテンプレートを選択することができます。

BOND システムの8つのスライドタイプに使用できる8種類の2Dテンプレートタイプがあります。

- BOND シングル染色
- BOND Oracle
- BOND 連続二重染色
- BOND 並行二重染色
- LIS シングル染色
- LIS Oracle
- LIS連続二重染色
- LIS 並行二重染色

「BOND」テンプレートは BOND システムで作成されたスライド用で、「LIS」テンプレートは LISで作成されたが BOND システムで印刷されたスライド用です。

これらのあらかじめ定義済みのテンプレートは編集または削除できません。

BOND は 1 次元、2 次元、および OCR バーコードを読み込むことができますが、作成できるのは 2 次元 バーコードのみです。

お使いの BOND システムを 5.1 以前のバージョンからアップグレードした場合、旧モデルでは 2D バーコードに対応していないため、既存のバーコードスキャナーを引き続き使用することはできません。

ある種類のスライドに別のテンプレートを使用するには、デフォルトのテンプレートをコピーして、その結果作成された「ユーザーテンプレート」を編集します。その後、それを「起動」して、BONDがその種類のスライドで使用できるようにします。1種類のスライドに複数のテンプレートを作成することができますが、一度に起動できるのは1個だけです。

警告:自動ラベル識別機能が失敗した場合に備えて、ラベルには十分な情報を記載しておいてください。そうすれば、手動でラベルを識別することができます。Leica Biosystems では、全部のスライドに次のフィールドを添付しておくようお勧めします。

- ケースID または患者名
- スライドID
- 組織の種類 コントロール組織の識別のため
- マーカー 適用される一次抗体またはプローブ

ラベルのテンプレート BOND シングル染色 マスライドラベルデザイナ-スライドのタイプ: 2-図〒 BOND シングル染色 2D_1 BOND シングル染色 勝可 *BOND シングル染色 2D BOND シングル染色 ユニット: 高さ: 概要の表示 12345678 12/12/2016 *mARK(1) Mr. J. Citizen *IHC F Dr. Jones 5 起動させる コピー 編集 削除 保存 キャンセル 印刷 フィーバ 6 4

図 10-3: ラベルのテンプレート画面

凡例

- 1 スライドのタイプ
 - スライドのタイプを選択します 下のペインに各タイプの全テンプレートが表示されます。
- 有効なテンプレート(青のチェックマークがある)
- 3 選択されたテンプレート、右の編集ペイン に表示
- 4 テンプレート管理 コマンド 図 10-4 ラベル のテンプレートの管理 コマンド を参照

- 5 左で選択したテンプレートのレイアウトを 使ったペイン編集
- 6 テンプレート編集 コマンド 図 10-5 ラベルのテンプレートの編集 コマンドを参照のこと。
- 7 テンプレートのプロパティ

現在選択されているテンプレートレイアウト 全体のプロパティ(左ペインの編集 ボタンを クリックするまで、表示専用)

図 10-4: ラベルのテンプレートの管理 コマンド

凡例

- 1 現在選択されているテンプレートに、現在選択されているスライドのタイプの全スライドラベルが適用されるように設定されます。
- 2 現在選択されているテンプレートをコピー して、新たに「ユーザー」テンプレートを作 成します。
- 3 画面右の編集ペインとコマンドを使用して、現在選択されているテンプレートを編集します。デフォルトのテンプレートは編集できません。
- 4 現在選択されているテンプレートを削除 します。デフォルトのテンプレートは削除で きません。

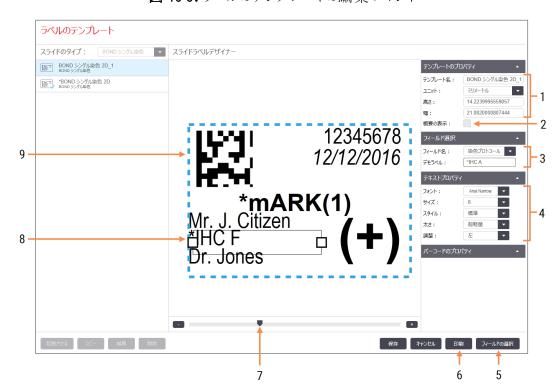


図 10-5: ラベルのテンプレートの編集 コマンド

凡例

1 テンプレートのプロパティ テンプレートの名前とサイズを入力します。

2 概要の表示

編集ペインにフィールドの概要を表示します。

3 フィールド選択

フィールドのタイプを選択して、編集ペインでフィールドを強調表示します。フィールド にデモテキストを入力します。

4 テキストプロパティ

選択されたフィールドのテキストプロパティを設定します。

5 フィールドの選択

フィールドの選択ダイアログを開き、レイアウトにフィールドを追加したり、レイアウトからフィールドを削除します。

6 印刷

選択されたプリンターで現在のレイアウトを印刷します。

- 7 コントロールをスライドしてデモラベルを拡大縮小します。
- 8 現在選択されているフィールド 右のテキストプロパティペインで設定します。ボックスの側面をドラッグしてボックスの幅を変更します。または、フィールド全体を移動させます。
- 9 ラベル ID またはバーコードフィールド サイズを変更をしてはいけません。

以下も参照のこと。

- 10.3.1 ラベルのテンプレートの作成、編集、起動
- 10.3.2情報タイプ

10.3.1 ラベルのテンプレートの作成、編集、起動

既存のテンプレートをコピーして編集し、新しいテンプレートを作成します。または、既存のユーザーテンプレートを編集することもできます(ただしデフォルトのテンプレートは編集できません)。テンプレートをアクティブ化すると、BOND システムで印刷されたラベルに使用することができます。

- 10.3.1.1 新規 テンプレートを作成
- 10.3.1.2 テンプレートを編集
- 10.3.1.3 テンプレートの起動

10.3.1.1 新規 テンプレートを作成

- 1 新規 テンプレートに使用 するスライドのタイプを選択します。 スライドのタイプの既存 テンプレートが全 て表示 されます。
- 2 コピーしたいテンプレートを選択します(作成したいテンプレートに最も近いテンプレートを選択します)。
- 3 コピーをクリックします。

2Dバーコード付きのテンプレートをコピーすると、2Dバーコード付きの新しい「ユーザーテンプレート」が作成されます。

10.3.1.2 テンプレートを編集

- 1 左ペインでテンプレートを選択し、**編集**をクリックします。 テンプレートレイアウトが編集できるように、画面の右で編集ウィンドウ、ボタン、プロパティリストが起動し、編集ペインに表示されます。
- 2 オプションとして、(右上のテンプレートのプロパティセクションで)**概要の表示**を選択し、編集ペインにフィールドの境界を表示させることもできます。
- 3 テンプレートのプロパティセクションに、テンプレート名を入力します。

ラベルのテンプレート名には、64文字以内の制限があります。また同じスライドのタイプの分類で使用される各々の名前は、区別できるように固有である必要があります。

- 4 レイアウトを編集します。
 - a フィールドを追加または削除 フィールドの選択をクリックし、表示したいスライドのプロパティを選択します(利用可能なプロパティのリストについては、10.3.2情報タイプを参照)。

注意:ラベルIDフィールドは自動認識に使用されているので削除できません。

- b ポジションフィールド-フィールドを選択して編集ペインにドラッグします。
- c フィールドの幅を変更する フィールドのどちらか一方の端でボックスをドラッグします。(フィールド高さはテキストのフォントサイズに応じて決定されます)。

テンプレートを使用する際に、設定されたフィールドの幅がラベルの値に対して不十分であった場合、テキストが切り詰められ、切り詰めた場所を明示する省略ポイントが表示されます。

ラベル ID フィールドのサイズを変更してはいけません。処理 モデュールのイメージャーで読み取ることができるように、デフォルト設定のままにしておく必要があります

- d テキストプロパティの設定 **テキストプロパティ**セクションでフィールドを選択し、フォントフォントとサイズとスタイルと太さを設定します。また、フィールド内のテキスト調整も設定します。
- 5 保存をクリックします。

ラベルID フィールドの周囲に十分な空間があるか確認してください。他のフィールドのテキストがこの部分に接触すると、自動識別に悪影響が出る恐れがあります。

10.3.1.3 テンプレートの起動

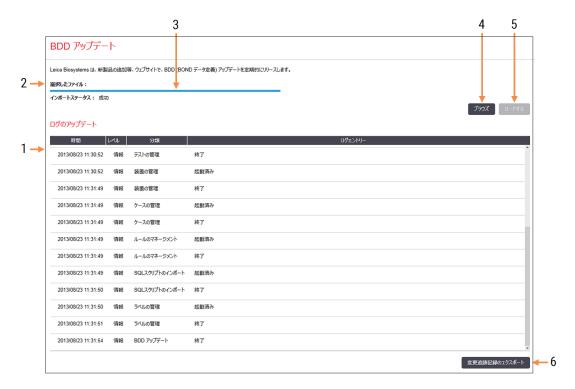
1 左ペインでテンプレートを選択し、**起動**をクリックします。 テンプレートに青のチェックマークが付き、起動されたことが表示されます。

10.3.2 情報 タイプ

ラベルテンプレートは、**ラベル**画面のフィールドの選択ダイアログで選択した、以下のスライド情報を表示するように構成することができます。

自動識別に使用される**ラベルID**フィールドはどのテンプレートからも削除できません。この識別は 2D バーコードとして表示されます。

フィールド	内容
ケースID	スライドのケースID(注:ケース番号ではない。6.3.2 ケース識別子を参照)。
スライド作成者	スライドが作成されたときにクライアントにログインしていたユーザーの名前。「LIS」の場合もあり。
ディネーチャープロトコール	ディネーチャープロトコールの略名。
ディネーチャープロトコール2	第二ディネーチャープロトコールの略名(二重染色プロトコールで必要になる場合があります)。
分注量	分注量 100 μL または 150 μL。
医師のコメント	BOND システムに記録した委託医師のコメント(6.4 医師の管理を参照)。
医師	依頼医師名。
酵素処理プロトコール	酵素プロトコールの略名。
酵素処理プロトコール2	第二酵素プロトコールの略名(二重染色プロトコールで必要になる場合があります)。
施設	管理者により施設設定画面の施設フィールドに入力された施設名(10.5.1 施設設定を参照)。
加熱プロトコール	加熱処理プロトコールの略名
加熱処理プロトコール2	第二 HIER プロトコールの略名(二重染色プロトコールで必要になる場合があります)。
ハイブリダイゼーションプロト コール	ISH ハイブリダイゼーションプロトコールの略名。
ハイブリダイゼーションプロトコール 2	第二 ISH ハイブリダイゼーションプロトコールの略名(二重染色プロトコールで必要になる場合があります)。
LIS医師のコメント	LIS インテグレーションパッケージシステムに関する、LIS システムの医師のコメント。
LIS医師	LIS インテグレーションパッケージシステムに関する医師名。
LIS リファレンス[2-8]	BONDシステムにインポートしたLISスライドプロパティ。
	11.2.6 LISスライドデータフィールドを参照。


フィールド	内容	
マーカー	シングル染色、並行二重染色、または連続二重染色の第一染色の一次抗体またはプローブの略名。	
マーカー2	二重染色の第二染色の一次抗体またはプローブの略名。	
患者コメント	ケースコメント(6.3.3 ケースの追加を参照)。	
患者	患者名。	
調製プロトコール	調製プロトコールの略名。	
正式名	LIS-ip システムでは、シングル染色または二重染色の第一染色の一次抗体またはプローブの公式名(11.2.4 正式マーカー名を参照)。	
正式名2	LIS-ip システムでは、シングル染色または二重染色の第二染色の一次抗体またはプローブの公式名(11.2.4 正式マーカー名を参照)。	
スライドのコメント	スライドのコメント(6.5.2 スライドの作成を参照)。	
スライドの日付	ラベルの印刷日(Windows のコントロールパネルの「地域 と言語のオプション」で設定 されたショートフォーマット)	
スライ ドID	BONDシステム内の個別のスライドID(8桁の数字)。	
スライドの優先度	LIS インテグレーションパッケージシステムにおける、スライドの優先順位。	
染色モード	シングル染色、二重染色、または Oracle スライド。	
染色プロトコール	シングル染色または二重染色の第一染色の染色プロトコールの略名。	
染色プロトコール2	シングル染色または二重染色の第二染色の染色プロトコールの略名。	
組織の種類	テスト組織、陽性コントロールまたは陰性コントロール組織。BONDでは、陰性コントロールを「(-)」、および陽性コントロールを「(+)」と印刷。テスト組織は印刷表示なし。	

10.4 BDD

BDD更新画面を使用して、BONDデータ定義を更新し、変更追跡記録ファイルを作成します。

図 10-6:BDD 更新画面

凡例

- **1** BDD更新のログ
- 2 選択したBDD更新ファイル
- 3 BDD更新プログレスバーとステータス
- **4 ブラウズ**BDD更新 ファイルを見つけ、左のフィールドで開きます。

以下を参照:

- 10.4.1 BDD更新
- 10.4.2 変更追跡記録

5 ロードする

クリックすると左のフィールドにBDD更新ファイルがインストールされます。

6 **変更追跡記録のエクスポート** クリックすると変更追跡記録ファイルが生成され ます-10.4.2 変更追跡記録を参照

10.4.1 BDD更新

Leica Biosystems は定期的に、BDD(BOND データ定義) 更新をウェブ上で配布します(たとえば、新たにリリースされた試薬を追加するなど)。BOND のBDD 更新ファイルのファイル拡張子は「*.bdd」です。これらの更新はBDD 更新画面からインストールします。

注意:世界中の各地域ごとの規則を反映するために、地域ごとに配布するBDDの更新ファイルが異なります。お住まいの地域に合った正しいアップデートファイルをインストールしてください(BOND についてダイアログに地域情報を表示。3.9 BOND についてを参照)。どのファイルを使用すべきか不明な場合には、カスタマーサポートにお問い合わせください。

BDDアップデートファイルはいつでもインストールできます。

- 1 Leica Biosystems ウェブサイトから更新 ファイルをダウンロードし、ウイルスに感染していない USB メモリー に保存してください。
- 2 USBメモリーをBONDまたはBOND-ADVANCEコントローラー(あるいは、BOND-ADVANCEシステムのBONDターミナル)に挿入します。
- 3 管理者のBDD更新画面を開きます。
- 4 ブラウズをクリックし、Windowsの開くダイアログで更新ファイルを見つけます。
- 5 開くをクリッ**クすると**、画面の左上付近にBDDファイルが表示されます。
- 6 **ロードする**をクリックし、新規データで定義を更新します。
- 7 更新が進行するにつれて、**更新ログ**にメッセージが書き込まれます。更新が完了すると、最後の行に「BDD の更新:完了」が表示され、トップペインのプログレスバーの下に「成功」というステータスが表示されます。
- 8 BOND について画面を開き、BDD が最新のリリースに更新されていることを確認します。

BDD の更新の成功を確認するには、BDD 更新画面または BOND について画面を表示します。プロセスには数分しかかかりませんので、更新が完了するまで待ってから、別の画面に移動するようお勧めします。

更新に失敗した場合、データ定義は更新前の状態に戻り、失敗したメッセージが更新ログに表示されます。失敗した場合、カスタマーサポートに連絡してください。

10.4.2 変更追跡記録

このセクションは、BOND-PRIME 処理 モジュールには適用 されません。BOND-PRIME 変更追跡記録は、サービスログレポートに含まれます。

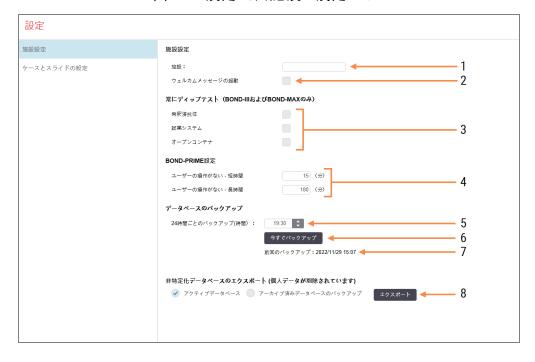
システムがいつ、誰によって変更されたかを示す変更追跡記録を作成することができます。変更追跡記録では、それぞれ異なるカテゴリの情報が別々のCSV ファイルに書き込まれます。ファイルは、コントローラーのフォルダ: BONDDrop-box\Audit\YYYYMMDD-HHmmss に書き込まれます。

変更追跡記録を作成するには:

- 1 BDD更新画面を開き、変更追跡記録のエクスポートをクリックします。
- 2 全部のデータを選択すると、今までにシステムで実行された変更が全て表示されます。また、**範囲指定**を選択すると、特定の期間が指定されるので、**開始と終了**の日付と時刻を定義してください。
- 3 **エクスポート**をクリックします。

10.5 設定

設定画面には、BONDの施設全体の一般設定 (**施設設定**)、デフォルトのケースとスライドの設定、そして、ワークフローオプション (ケースとスライドの設定)があります。



- 10.5.1 施設設定
- 10.5.2 ケースとスライドの設定
- 10.5.3 データベースバックアップ

10.5.1 施設設定

施設設定ペインで一般施設設定オプションを設定します。

図 10-7:設定画面施設の設定ペイン

凡例

1 施設

レポートに表示される施設の名称を記入 します。

2 ウエルカムメッセージの起動

ウエルカムメッセージ起動BONDソフトウェアが起動するとウエルカムメッセージが再生されます。

3 常にディップテストする

これをチェックすると、毎回実行する前に指定の形式の試薬コンテナのディップテストが実行されます-8.3.1 試薬量の決定を参照

4 ユーザーの非アクティブ時間 BOND-PRIMEのみ。

短期-非アクティブ時間を分単位で設定します。この時間が経過すると、ユーザーは

PIN を再入力する必要があります。 長期-非アクティブ時間を分単位で設定します。この時間が経過すると、ユーザーはログインし直す必要があります。

5 24時間ごとのバックアップ(時間)

毎日の自動データベースバックアップを実行する時刻を設定します(24時間表示) - 10.5.3 データベースバックアップを参照

6 今すぐバックアップ

データベースのバックアップを直ちに実行します - 10.5.3 データベースバックアップを参昭

- 7 前回のバックアップに関する情報。バックアップが進行中の場合はプログレスバーが表示されます。
- 8 **匿名化データベースのエクスポート** 匿名化データベースを、有効なデータベー スからエクスポートするか、データベースバッ クアップからエクスポートするかを選択しま す。

10.5.2 ケースとスライドの設定

ケースとスライドの設定で設定できること

- ケースとスライドの作成時に設定可能な各種の数値のデフォルト
- ケースとスライドの作成のワークフローオプション

ケースとスライドのオプションの説明については、図 10-8と図 10-9を参照してください。

図 10-8: ケースとスライドの設定ペインでのケースの設定

	ケースの設定	
1 -	→ デフォルトの調製:	*Dewax ▼
2 -	プフォルトの分注量:	150 µL ▼
3 –	→ ラベルなしでケースまたはスライドを作成する:	ケースとスライド
4 –	→ 処理済みケースのライフタイム:	30 (日)
5 –	→ デイリーケースを作成する	

凡例

- 1 デフォルトの調製 新規 ケースのデフォルトの調製 プロトコール
- **2 デフォルトの分注量** 新規 ケースのデフォルトの分注量
- 3 ケースとスライドの臨時作成 スライドのロード後のケースやスライドの作成オプションを設定します - 6.8.2 オンボードスライドの識別オプションを参照。

注意: BOND-PRIME 処理 モジュールには適用 されません。

4 処理済みケースのライフタイム

ケースの最後のスライドの処理開始後に、ケースがスライド設定画面上に残っている日数 - 6.3.4.2 処理済みケースのライフタイムを参照。

5 デイリーケースを作成する 毎日、自動的に、その日の処理済みスライド全部について、1件のケースを作成します-6.3 ケースの作業を参照。

図 10-9: ケースとスライドの設定ペインでのスライドの設定

凡例

1 染色モード

新しいスライドのデフォルトの設定 - 6.5.2 スライド の作成を参照

2 BOND ラベル ID

BOND で作成されたラベル識別子は 2D バーコードです。

3 BOND の強制印刷

BOND で印刷 されたラベルを持つスライドのみに 処理を許可します - 6.8.2 オンボードスライドの識別 オプションを参照

注意: BOND-PRIME 処理 モジュールには適用 されません。

10.5.3 データベースバックアップ

データベースには重要な患者情報が保存されており、BONDを正常に動作させる上で欠かすことができません。従って、データベースが壊れたときに復元させることができるように、BONDには自動および手動バックアップのシステムが組み込まれています。

- 毎日の自動バックアップ
- 「手動」、すなわち、オンリクエストバックアップ

全てのバックアップファイルは、フォルダのサブフォルダ内のBONDコントローラーに保存されています。

B:\BOND Drop-box\Backups

バックアップのタイプごとに、常に2つのファイルが同じ名前のフォーマットで作成されます:

[施設名]_BOND_YYYY-MM-DD-HH-mm-ss(年-月-日-時間-分-秒)

ここで施設名は、管理者の**設定**画面に入力された名称です(10.5.1 施設設定を参照)(もしくは、施設名が入力されていない場合は、「施設」というデフォルト名が使用されます)。この名前には、バックアップが実行された日時が含まれています。メインバックアップファイルには「.dump」という拡張子が付き、さらに、「.log」という拡張子があるログファイルも保存されます。

毎日の自動バックアップは、管理者の**設定**画面で設定された時刻に実行されます(10.5.1 施設設定)。直近のバックアップは「Scheduled_Latest」フォルダに保存されます。翌日のバックアップが実行されると、これは「Scheduled_1_Days_Old」フォルダに移動します。その後、6日間、同様に実行され、その後(「Scheduled_7_Days_Old」フォルダに移動した後)、削除されます。

予定したバックアップの時間にBOND コントローラーがオフになっている場合、バックアップは処理されません。コントローラーがオンになる時間と処理中の可能性が低い時間を設定するように注意してください。

手動バックアップは、管理者の**設定**画面で、いつでも実行できます(ただし、自動バックアップの実行中は除 ◇。データベースバックアップセクションで今すぐバックアップをクリックすると実行されます(10.5.1 施設設定を参 照)。

バックアップが終了するとダイアログで通知されます。バックアップファイルとログファイルは「Manual」フォルダに保存されます。次回手動バックアップを実行すると、ファイルは「Manual_Previous」フォルダに移動します。このファイルは手動バックアップを3回実行すると削除されます。すなわち、直近の2回のバックアップファイルしか保存されないことになります。

いずれかのタイプのバックアップに成功しなかった場合、管理者とクライアントのファンクションバーの右側にアイコン(右)が表示されます。正常にバックアップが終了するまでアイコンは残ります。アイコンが表示されたら、できる限り早く手動バックアップを試みます。それでも失敗した場合は、すぐにカスタマーサポートに連絡してください。

特に、データが多量に蓄積されるBONDの旧型システムでは、バックアップファイルの収容スペースが十分あることを頻繁に確認してください。通常、新たにバックアップファイルが1個書き込まれると、古いファイルが1個削除されるので、ドライブの使用量は、比較的小さな単位でしか増加しません。しかし、ある時点で追加のドライブスペースが必要になるため、その場合にはカスタマーサポートにご連絡ください。

さらに追加の安全対策として、定期的にファイルを別の場所(BOND コントローラー以外)にバックアップしてください。可能であれば、施設や会社のIT部門と相談して自動バックアップを実施してください。それが不可能な場合は、手動でファイルを週一回(使用量の多い施設ではさらに頻繁に)コピーしてください。BOND コントローラーは、IT部門がログインして、安全なFTPを通してBONDドロップボックスフォルダからバックアップファイルをダウンロードできるよう、安全なFTPサーバーを稼動します。

データベースを復元 する必要 がある場合には、カスタマーサポートにご連絡ください。

10.6 ハードウェア

ハードウェアの設定画面を使用して、処理モデュール、ポッド(1つのクライアントから制御される処理モデュールのグループ)、スライドラベルプリンターを設定します。

ハードウェアの設定は次の3つのタブで実行されます。

- 10.6.1 処理 モデュール
- 10.6.2 ポッド
- 10.6.3 スライドラベラー

10.6.1 処理モデュール

BOND システムに処理 モデュールを表示 し、バルク試薬 コンテナを設定 するには、**処理 モデュール**タブから行います。

処理モデュールが、ネットワークケーブルで物理的にBONDコントローラーに接続されている場合は、**処理モデュール**タブの左ペインに処理モデュールが自動的に表示されます。

BOND コントローラーは互換性のある処理モデュールしか接続できません。互換性のない処理モデュールが接続されると、アイコンとエラーメッセージが表示されます(次のページのアイコンの表と意味を参照)。

処理 モデュールを選択すると、タブの右側にその詳細が表示されます。処理 モデュールに固有の名前を付け、必要に応じてバルク容器の一部を無効にしてください(10.6.1.1 バルク試薬容器の無効化を参照)。この設定を保存すると処理 モデュールが「接続された」状態になります。

これは、停止しない限り、スイッチを切ったり接続を外してもタブ内に残ったままになります(10.6.1.2 処理モデュールの閉鎖を参照)。

3 ハードウェアの設定 スライドラベラー 処理モデュールに、バルク試薬の設定が定義されています。 シリアル番号: 3210123 BOND-III #1 10.252.10.2:111 M212025 BOND-MAX BOND-MAX #4 IP アドレス: タイプ: BOND-III バルク容器設定 TH B3 「いません」 *BlkWast *ER1 *ER2 2 1 3 4 5 7 9 6 8 TH Max 5 4 6 7

図 10-10: ハードウェアの設定画面の処理 モジュールタブ

凡例

- 1 接続されている全ての処理モデュール
- 2 現在選択されている処理モデュール その詳細は画面右に表示されます。
- 3 選択した処理モジュールのシリアル番号、名前(編集可能)、IPアドレス、および処理モジュールタイプ。
- 4 閉鎖

選択した処理 モジュールを閉鎖します - 10.6.1.2 処理 モデュールの閉鎖を参照。

5 バルク容器設定 - 使用しないステーションから チェックマークを外します。下の10.6.1.1 バルク 試薬容器の無効化を参照。

注意:BOND-PRIME 処理 モジュールには適用 されません。

6 メンテナンス完 了

メンテナンスが完了したら、これをクリックすると、日付とスライドカウントをリセットすることができます-メンテナンスの12 クリーニングとメンテナンス(BOND-III および BOND-MAX のみ)を参照閉鎖

7 保存

新しく接続した処理モデュールを作動させるには、設定を保存する必要があります。処理モジュールの設定を保存するには、まず、スライド染色ユニットのロックが解除されていることを確認しなければなりません。

左ペインの処理モジュール画像の横にあるアイコンは、モジュールの様々な状態を表します。

アイコン	意味	アイコン	意味
-C'F-	処理モジュールが接続されていません。	%	処理モジュールのメンテナンス作業中です。
			接続された処理モデュールがBONDシステムと互換性がない場合、このアイコンも(エラーメッセージと一緒に)表示されます。
	処理モジュールは初期化中。	P	処理 モデュールがバルク試薬の設定を 受信していません。保存 をクリックして 設定を送信してださい。
	現在、処理モジュールの点検中です。		処理 モデュールがバルク試薬の設定を 受信しました。

10.6.1.1 バルク試薬容器の無効化

このセクションは、BOND-PRIME 処理 モジュールには適用 されません。

BOND システムで抗原賦活化や脱パラフィンを行わない施設では、ソフトウェアでコンテナを無効にして、処理モジュールから当該コンテナを削除することができます。そうすることで、コンテナ内に試薬を保持する必要がないため、コンテナへの流路ラインのプライミングを省略でき処理モジュールの初期化を早めることができます。バルク容器を無効にするには、バルク容器の設定ペインでコンテナのチェックマークを外し、保存をクリックします。プロンプトが出たら、処理モデュールを再起動して変更内容を反映します。無効にしたコンテナは、取り外すことも、処理モジュール内に残しておくこともできます。

10.6.1.2 処理モデュールの閉鎖

処理モデュールがもう必要ない場合は、停止して、**処理モデュール**タブから削除してください。処理モデュールがオフになっていることを確認してから、**処理モデュール**タブを選択し、**停止**をクリックします。処理モデュールがポッドに残っている場合、停止したときに、自動的にポッドから削除されます。

処理モジュールを復帰させるには、ネットワークケーブルを再接続してください。

10.6.2 ポッド

ポッドは、1人のクライアントで制御できる処理モデュール(とスライドラベルプリンター)の総称です(3.1システムの構造を参照)。処理モデュール全てがコントローラーで制御されるシングルシートインストレーションでも、BONDポッドを作成してください。ポッドはポッドタブで作成して編集します。

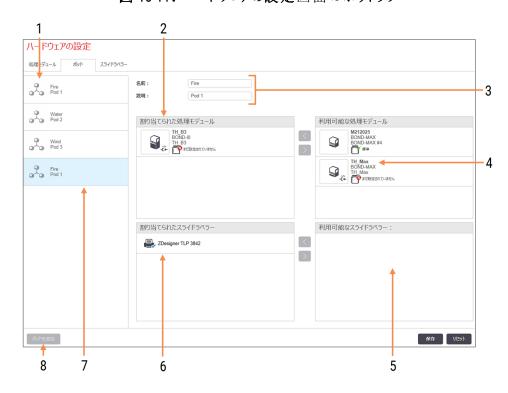


図 10-11: ハードウェアの設 定画面のポッドタブ

凡例

- 1 全ポッドのリスト
- 2 選択 されたポッドの処理 モデュール.臨床 クライアントと同じ順序 になります 次 を参照: 10.6.2.1 新規 ポッドを作成 する
- **3** 選択したポッドの名称 と説明 (どちらも編集可能)
- 4 ポッド内にない全ての処理モジュール
- 5 ポッド内にない全てのスライドラベラー

- 6 選択されたポッドのスライドラベルプリンター.デフォルトのプリンターには青のチェックマークがあります・次を参照: 10.6.2.1 新規ポッドを作成する
- 7 現在選択されているポッド 詳細は画面 右に表示されます。
- 8 ポッドを追加 クリックすると新規ポッドが設定できます- 下 の10.6.2.1 新規ポッドを作成するを参照。

削除

空のポッドを右クリックし、**削除**をクリックすると削除されます。

処理 モデュールをポッドに追加して利用できるようにするには、処理 モデュールタブで設定します(10.6.1 処理 モデュールを参照)。スライドラベラーがポッドで利用できるようにするには、スライドラベラータブで設定します(10.6.3 スライドラベラーを参照)。

10.6.2.1 新規ポッドを作成する

- 1 ポッドを追加をクリックします。
- 2 ポッドに固有名を付けます。説明も付けることもできます。
- 3 利用可能な処理モジュールペイン(右上) から処理モジュールを選択し、左矢印ボタン をクリックして、割り当てられた処理モジュールパネル(左上)に追加します。

複数の処理モジュールを追加する際は、臨床クライアントのタブに表示したい順序で追加します。たとえば、処理モジュールAを最初に選択して処理モジュールBを2番目に選択した場合、ペインと、ポッドに接続されたクライアントのシステムステータスタブで、Bの上にAが表示されます。処理モデュールの

順序を変更するには、右矢印ボタンで処理モデュールを移動し、正しい順序に入れ替えてください。

4 利用可能なスライドラベラーペイン(右下)から1台またはそれ以上のスライドラベルプリンターを選択し、割り当てられたスライドラベラーペイン(左下)に追加します。

複数のプリンターを追加すると、ラベルを印刷する際に、追加したプリンターをどれでも使用できます。 プリンターを右クリックして**デフォルトプリンターとして設定**をクリックするとデフォルトのプリンターとして設定 されます。 デフォルトのプリンターには緑のチェックマークが付きます。

5 保存をクリックします。

ポッドを削除するには、処理 モジュール とプリンタを全て削除してから、左ペインのポッドを右クリックし、**削除**をクリックします。

10.6.3 スライドラベラー

BOND システムで使用 されるスライドラベラーは、管理者 クライアントのハードウェア設定画面のスライドラベラータブで検索して識別し、起動させなければなりません。こうすることで、ポッドで使用できるようになります(10.6.2 ポッドを参照)。

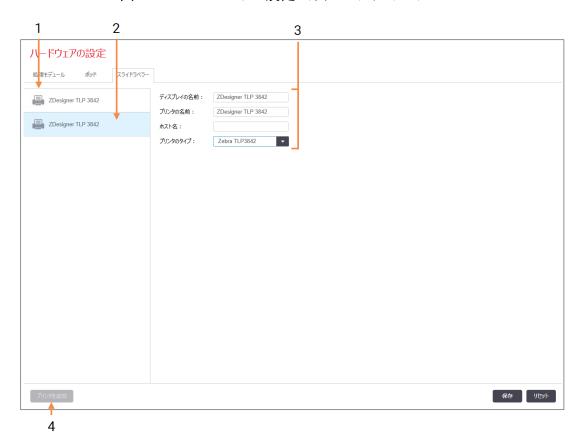


図 10-12: ハードウェアの設定画面のスライドラベラータブ

凡例

- 1 全てのスライドラベラーのリスト
- 2 現在選択されているスライドラベラー-詳細は画面右に表示されます。
- 3 スライドラベルプリンターの詳細 下の 10.6.3.1 スライドラベルプリンターの詳細を 参照
- **4 プリンタを追加**クリックして新しいスライドラベラーを追加します。 画面の右に設定されます

新たに接続されたスライドラベラーがポッドで使用できるようにするには、プリンターを追加をクリックし、画面右にプリンターの詳細を入力します。

ポッドがないインストレーションもあります。ポッドがない場合、リストの最初にデフォルトのプリンターが表示されます。

不要なスライドラベラーを新しいスライドラベラーと入れ替える場合 - 古いスライドラベラーの詳細を新しいスライドラベラーの詳細と入れ替えることができます。

ラベラーをリストから削除するには、ラベラーを右クリックして、削除を選択します。

10.6.3.1 スライドラベルプリンターの詳細

BOND システムでは、各スライドラベルプリンタについて、以下の詳細事項を必要とします。

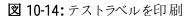
- ディスプレイの名前: BOND ソフトウェアで表示 されるラベラーの名前
- **プリンターの名前**: Windows で使用 され るプリンターの名前

BOND-ADVANCE にインストールされているプリンターの名前は、実際には、Windowsのプリンターとファックスダイアログに表示される共通の名前です。

• ホスト名: BOND-ADVANCE にインストールされているプリンターが Zebra プリンター(ZDesigner TLP 3842 など) 以外の場合には空白にしておきます。この場合、スライドラベラーが接続されているコンピュータ名を入力します。

コンピュータ名はWindowsシステムダイアログでを見つけることができます(図 10-13を参照)。

図 10-13: Windows システムダイアログのコンピュータ名



プリンターのタイプ: プリンターモデル(ZDesigner TLP 3842 など)

10.6.3.2 テストラベルを印刷

印刷の調整を確認するには:

- 1 管理者 クライアントでラベル画面を開きます。
- 2 左パネルでラベルを選択し、印刷をクリックします。

- 3 プリンターの選択ダイアログボックスで該当するプリンターを選択し、印刷をクリックします。
- 4 ステップ3 を3 回 ないし5 回繰り返します。ラベルに全ての文字が明瞭かつ正確に印刷されていることを確認します。
- 5 ラベル上の画像の位置が正しくない場合には、Zebra プリンターキャリブレーションの調整 (252ページのセクション10.6.3.3) またはCognitive プリンターキャリブレーションの調整 (257ページのセクション10.6.3.4) を参照してください。

10.6.3.3 Zebra プリンターキャリブレーションの調整

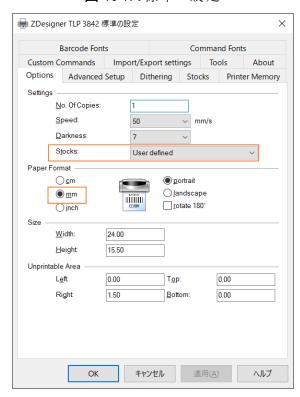
Zebra プリンター TLP 3842 または GX430t の場合には以下の手順が適用されます。多少の違いがありますが、それらは該当する設定に説明されています。

BOND-ADVANCE にインストールする場合、BOND-ADVANCE ターミナルで以下の手順を実行してください。

- 1 Windows タスクバーで Start ボタンをクリックし、Devices and Printers を選択します。
- 2 プリンターアイコン(ZDesigner TLP 3842 など) を右 クリックし、プリンターのプロパティを選択します。 図 10-15に示すように、システムにプリンターのプロパティダイアログボックスが表示されます。

図 10-15:プリンターのプロパティ

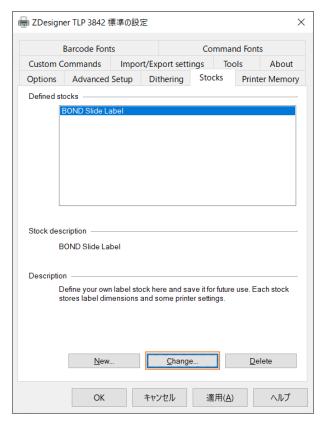
3 詳細設定タブを選択します。


図 10-16:プリンターのプロパティ-詳細設定タブ

4 標準の設定…ボタンをクリックします。

図 10-17に示すように、システムに標準の設定ダイアログボックスが表示されます。

図 10-17:標準の設定



本書では、プリンターの設定はミリメートルで表示されます。そのため、用紙フォーマットをmmに設定します。

5 Stocks ドロップダウンリストから「BOND Slide Label」を選択します。

6 Stocks タブを選択します。

図 10-18: 標準の設定 - Stocks タブ

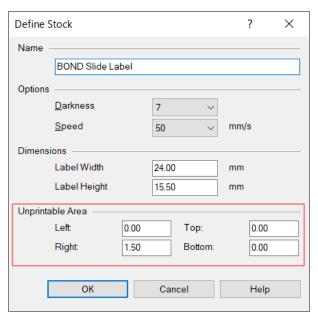

7 Change... ボタンをクリックします。

図 10-19に示すように、システムにストックの定義ウィンドウが表示されます。

設定を変更する前に、下表に示すように、プリンターのデフォルト設定に戻り、テストラベルを印刷するようお勧めします。

設定	TLP 3842	GX430t
Label Width	24.00 mm	40.00 mm
Label Height	15.50 mm	15.00 mm
Unprintable Area - Left	0.00 mm	4.50 mm
Unprintable Area - Right	1.50 mm	0.00 mm

図 10-19: Stock ダイアログボックスを定義 する

- 左端が欠けている場合には、印刷不能エリアで右端の値をわずかに減らします(たとえば 1.50mm から1.00 mm へ)。
- 右端が欠けている場合には、**印刷不能エリアで右端**の値をわずかに増やします(たとえば 1.50mm から2.00 mm へ)。
- 8 **OK**をクリックします。

9 ラベルが適切に印刷される(テキストが欠けなくなる)まで、ラベルの印刷と調整手順を繰り返します。

OK をクリックした後に、エラーメッセージ ストック名 はシステムフォームデータベースによって既に使用 されています が表示 されることがあります。この場合、ストックの定義 ダイアログボックスでName を変更し図 10-20、OK をクリックします。

図 10-20: Stock ラベルの名前 を変更

10.6.3.4 Cognitive プリンターキャリブレーションの調整

BOND-ADVANCE にインストールする場合、BONDDashboard として BOND-ADVANCE コントローラーにログインします。 ダッシュボードが表示 されている場合には、Alt+F4 を押して閉じてください。

- 1 Windows タスクバーで Start ボタンをクリックし、Devices and Printers を選択します。
- 2 プリンターアイコン(Cognitive Terminal 1 など)を右 クリックし、プリンターのプロパティを選択します。

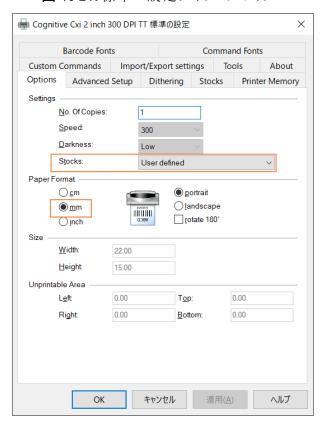

図 10-21: Printer Propertiesの選択

印刷の環境設定を選択しないでください。一見ダイアログボックスは同じょうに見えますが、設定が正しく更新されません。

図 10-22に示すように、システムにCognitiveプリンタのプロパティダイアログボックスが表示されます。

3 詳細設定タブを選択します。

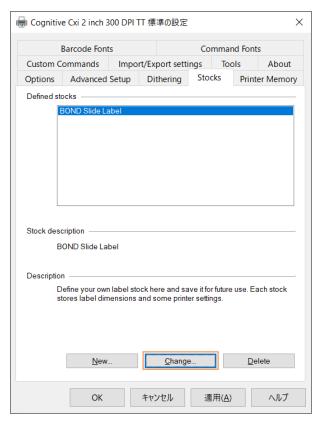
図 10-23に示すように、システムに詳細タブが表示されます。


図 10-23:詳細設定タブ

4 標準の設定...ボタンをクリックします。

図 10-24に示すように、システムに標準の設定ダイアログボックスが表示されます。

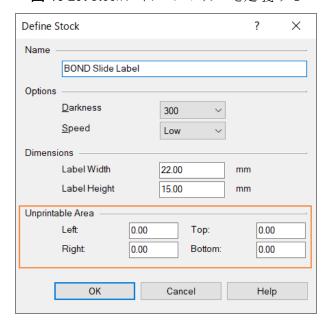
図 10-24:標準の設定ダイアログボックス



本書では、プリンターの設定はミリメートルで表示されます。そのため、用紙フォーマットをmmに設定します。

5 Stocks ドロップダウンリストから「BOND Slide Label」を選択します。

6 Stocks タブを選択します。


図 10-25: 標準の設定 - Stocks タブ

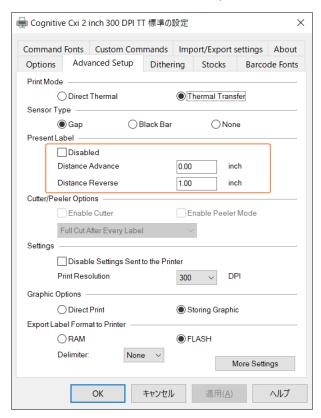
7 Change... ボタンをクリックします。

図 10-19に示すように、システムにストックの定義ダイアログボックスが表示されます。

図 10-26: Stock ダイアログボックスを定義する

- 左端が欠けている場合には、印刷不能エリアで右端の値をわずかに減らします(たとえば0.50 mm から0.30 mm へ)。
- 右端が欠けている場合には、印刷不能エリアで右端の値をわずかに増やします(たとえば0.50 mm から0.70 mm へ)。
- 上または下が欠けている場合には、Cognitive Cxi プリンターで垂直方向のラベルの位置を調整 (263ページのセクション10.6.3.5)を参照してください。
- 8 **OK**をクリックします。

OKをクリックした後に、エラーメッセージストック名はシステムフォームデータベースによって既に使用されていますが表示されることがあります。この場合、ストックの定義ダイアログボックスでNameを変更し図 10-27、OK をクリックします。


図 10-27: Stock ラベルの名前を変更

9 ラベルを印刷して結果を確認します。ラベルが適切に印刷される(テキストが欠けなくなる)まで、ラベルの印刷と調整手順を繰り返します。

10.6.3.5 Cognitive Cxi プリンターで垂直方向のラベルの位置を調整

ラベルの位置が高すぎるか低すぎる場合には、図 10-28に示すように、**標準の設定**ダイアログボックスで**詳細設定**タブを選択します。

図 10-28: Advanced Setup タブ

- 上端が欠けている場合には、**現在のラベル**の下で**上部の間隔**の値をわずかに減らします(たとえば 0.00 mm から1.00 mm へ)。
- 下端が欠けている場合には、現在のラベルの下で下部の間隔の値をわずかに減らします(たとえば 0.00 mmから1.00 mmへ)。
- 一つの設定値のみに調整を適用してください。Distance Advance に既に値が入っていて下端が欠けている場合、Distance Reverse の値を増やすのではなく、Distance Advance の値を減らしてください。一方の値をゼロにし、もう一方の値で位置を調整します。
- 1 **OK**をクリックします。
- 2 ラベルを印刷して結果を確認します。ラベルが適切に印刷される(テキストが欠けなくなる)まで、ラベルの印刷と調整手順を繰り返します。

I LIS インテグレーションパッケージ(BOND コントローラー上)

オプションのBOND LIS インテグレーションパッケージ(LIS-ip) は、BOND システムを互換性のある任意の臨床検査情報システム(LIS) に接続します。LIS-ipは、ケースとスライドの情報をLISからBOND システムに転送し、BOND システムはLIS-ipを通じてLISに処理情報を返します。

LIS-ip は高度な設定が可能で、多種多様なタイプのLIS および施設のワークフローとともに利用することができます。LIS-ip は、LIS とBOND システムをシームレスに統合した構成を可能にし、LIS スライドの自動認識によってスライドのラベル変更を不要にしています。利用できるワークフローの概要についてはワークフロー(274ページのセクション11.8)を参照してください。

Leica Biosystems では、各インストール用にユーザー別の包括トレーニングを用意しています。

BOND LIS-ip の詳細については、以下のセクションを参照してください。

- LIS-ipの操作に関する用語11.1 LISの用語を参照してください。
- ソフトウェアのその他の機能の詳細11.2 ソフトウェアのその他の機能を参照してください。
- LISの接続と設定の概要11.3 LISの接続と初期化を参照してください。
- LISのエラー表示と回復の説明11.4 LIS通知を参照してください。ケースとスライドのデータの参考リスト
 - 11.5 ケースおよびスライドのデータ要件を参照してください。
- BOND LIS-ipがLISにレポートできるスライドステータスデータの説明 11.6 LISへのスライドデータの返信を参照してください。
- スライドラベルの要件11.7 スライドラベルを参照してください。
- 一般的なLISの導入の概要11.8ワークフローを参照してください。

11.1 LISの用語

LIS の機能を説明したり、通常のBONDシステムエレメントとLIS エレメントをを区別する際に、多くの新規用語が使われます。新規用語の説明の一覧は以下のとおりです。

- LIS 臨床検査情報システム。施設の作業に関連する情報を管理するソフトウェアです。
- LIS-ip BOND LISインテグレーションパッケージ。LISによるBOND システムの作業を可能にするオプションのアドオンシステムです。
- LISスライド-LISを用いて作成するスライド。BONDシステムに送信して処理します。
- LISケース-LISを用いて作成するケース。BONDシステムに送信して処理します。
- 自動ID スライドラベル スライドラベルは、BOND システムによって自動的に認識されます。認識できるバーコード形式が使用される場合、ラベルは、BOND システムまたはLISで印刷できます。11.3 LISの接続と初期化を参照。
- アシス トIDスライドラベル the BOND システムが自動的に認識できないスライドラベル。
- LIS スライドラベル LIS に接続されたプリンターが出力するスライドラベル。LIS スライドラベルは、LIS バーコードおよびLIS のラベルに設定されたその他の任意の情報を表示します。
- BOND-LIS スライドラベル LIS で作成されたが BOND システムに接続されたプリンターで印刷されたスライドのスライドラベル。BOND-LIS ラベルでは、BOND LIS スライドラベル設定を使用します。これは BOND ソフトウェアで編集可能です。
- アクセス番号 特定のケースを識別するための番号などのIDを指すLISの一般用語。アクセス番号はBONDの「ケースID」に該当します。
- 患者データ-BOND システムの「ケース」を構成する、詳細な患者情報。
- 統計学的データ- 患者データまたはケースデータを示すLISの一般用語。
- LISバーコード- 各LISスライドを固有に識別する為に、LISが割り当てたバーコード。

11.2 ソフトウェアのその他の機能

LISにより、BOND システムの標準装備では使用できないその他の機能を使用することができます。 なお BOND LIS-ipシステムでは、BOND の標準 ソフトウェアの全機能を使用できます。

以下を参照:

- 11.2.1 LIS ステータスアイコン
- 11.2.2 LISケース
- 11.2.3 LISスライド
- 11.2.4 正式 マーカー名
- 11.2.5 優 先 スライド
- 11.2.6 LISスライドデータフィールド
- 11.7 スライドラベル

11.2.1 LIS ステータスアイコン

図 11-1: BOND ソフトウェア画面の右上にあるLISステータスアイコン

LIS-ip を搭載したBOND ソフトウェアには、標準ファンクションバーの右端に、LIS ステータスアイコンが表示されます。これには以下の各項目が表示されます。

- LISの接続 ステータス(11.3 LISの接続 と初期化を参照)
- LISのエラー表示(11.4 LIS通知を参照)

11.2.2 LISケース

LIS ケースは、LIS で作成 された後に BOND に送信 されたケースです。一方、BOND ケースは BOND で作成 されるケースです。

- LIS ケースには、BOND のケースと同じプロパティフィールドが含まれていますが、ケースがBOND に送信された後は、情報を編集することはできません。
- BOND システムは、全てのLISケースに固有なケース番号を自動的に割り当てます。
- LISのアクセス番号またはケースIDがBONDでのケースIDになります。
- このケースIDが既存のBONDのケースIDと同じ場合、新しいLISケースは拒否されます。LISのケースIDを変更してください。
- 新しい LIS ケースのケースIDと患者名が、既に**スライド設定**画面に表示されている有効な LIS ケースの それと同じ場合、自動的に既存のケースが使用されます。「新規」ケースのスライドは、既存のケース のスライドに追加されます。ケースIDは既存のIDと同じで患者名が異なる場合、新しいケースは拒否されます。
- LISケースのケースIDと患者名が、BONDの失効したLISケースまたは削除されたLISケースのそれと同じ場合、管理者のLIS画面での設定に応じて、既存のケースが再使用されるか、新規ケースが拒否されます(重複するケースID(228ページのセクション)を参照)。
- BOND ソフトウェアを用いてLISケースに追加されたスライドは、BOND スライドとして作成されます。
- LIS ケースには、管理者で設定されているように、BOND のケースと同じデフォルトの調製プロトコールと分注量があります(10.5.2 ケースとスライドの設定を参照)。

11.2.3 LISスライド

LISスライドは、LISで作成された後にBONDに送信されたスライドです。一方、BONDスライドとは、BONDのケースまたはLISケースのいずれかについてBONDで作成されたスライドです。

LISスライドは、スライドリストで、ラベルの色で識別することができます。LISスライドには灰色のラベルが付いています。

図 11-2: LISスライド(左) とシングル染色標準BONDスライド(右)

LISスライドには以下の点が適用されます。

- LISで印刷したラベルには、通常、バーコードが含まれています。バーコードがBONDシステムのサポート する6種類のフォーマットのいずれかで、BONDシステムがそのフォーマットを読み込むように設定されている場合は、スライドがロードされたときにBONDシステムがスライドを識別できます。11.3 LISの接続と初期化を参照してください。
- LISスライドのうちBONDシステムを用いてラベルを印刷したものは、BOND LISスライドラベルの設定が適用されます。10.3 ラベルを参照してください。
- LISスライドにはLIS指定のフィールドが含まれる場合があります。11.2.6 LISスライドデータフィールドを参照してください。
- LISで作成されたスライドのプロパティは、BONDソフトウェアでは編集できません。
- LISスライドのコピーにBONDソフトウェアを使用した場合は、そのコピーはBONDスライドラベルの設定で BONDスライドとして作成されます。LIS固有のフィールドは全て削除され、全てのフィールドが編集可能 になります。

11.2.4 正式マーカー名

正式名称(一次抗体およびプローブ)により、LISで指定されたマーカーとBONDシステムに登録されたマーカーとをリンクすることができます。LISで検査のためのマーカーが指定されると、BONDシステムではその検査の際に同じ正式名称の試薬を使用します。なおBONDシステムにおいて、LISのマーカー名に相当する正式名称が検出できないときは、LISの指定した検査が棄却されます。

正式マーカー名を指定するには、「試薬プロパティの編集」ダイアログの正式名フィールドを使用します(8.2 試薬の設定画面を参照)。このフィールドは、LIS-ip がインストールされている場合のみ表示されます。

正式名はそれぞれ固有なものとしてください。正式名はBOND試薬間でいつでも入れ替えることができ、入れ替えた場合でもすでに作成されたスライドには影響はありません。

11.2.5 優先 スライド

LISでは至急の処理を必要とするスライドに、優先スライドを指定することができます。優先スライドを含むケースはスライド設定画面で赤色のバーとともに表示されます。

BOND-PRIME 処理 モジュールでスライドに優先順位 をつけるには、プリロードドロワーに優先するスライドのみをロードし、それらのスライドが処理に進んでから、他のスライドをプリロードドロワーにロードします。

図 11-3: スライド設定画面に赤で強調表示された、優先スライドを含むケース

ケース ID	患者名	医師名	スライド
LS0012 - 45216	Shady, Albert	Joseph	1
20130416-ISHRefine	Benjamin Hightower	Kevin Pannell	10
20130416-IHC	Fannie Hurley	Arthur Josey	10

現在、優先 LIS ケースは、初めにリストの最後に追加されます。このケースはクライアントの後続のセッションのリストでのみ、一番上に表示されます。

赤い「P」でマーキングされた優先スライド。

図 11-4: スライド設定画面に表示された優先LISスライド

11.2.6 LISスライドデータフィールド

BOND LIS-ip ではスライドの標準プロパティの他に、設定を変更できる7つのデータフィールドがあり、LIS からの情報を選択して表示することができます。基本接続の設定は、インストール時にLeica Biosystems のサービス担当者が行いますが、その後はユーザーがフィールドの表示 / 非表示を選択したり、各フィールドの名前を設定することができます。LISスライドデータフィールド(228ページのセクション)を参照のこと。

このフィールドは「スライドのプロパティ」ダイアログの専用の「LIS」 タブに表示され、スライドラベルにも印刷できます(10.3 ラベルを参照)。これらは表示を目的としたものであり、スライドの処理には影響しません。

11.3 LISの接続と初期化

それぞれの BOND LIS-ip モデュールは、認定を受けた Leica Biosystems の担当者がインストールする必要があり、この担当者は個々のラボの要件に従って操作をカスタマイズします。

BOND システムは、次のバーコード形式をすべて読み込むように設定できます。

2 次元バーコード				
QR				
Aztec	说回答 注题24			
Data Matrix				

LIS モデュールのインストールが完了 すると、BOND ソフトウェア画面の右上に、接続ステータスを示すLIS アイコンが現れます(図 11-5)。

図 11-5:LIS非接続(左)、LIS接続(右)

11.4 LIS通知

BOND ソフトウェアは、BOND ソフトウェア画面の右上にあるLIS ステータスアイコンでLIS 接続やデータのエラーを表示します(11.2.1 LIS ステータスアイコンを参照)。未解決のLIS 通知がある場合には、未解決の通知の件数が表示されます。新たに通知イベントが発生すると、カウンタが短時間点滅します。

図 11-6:LIS ステータスアイコン

通知の詳細を見るには、ステータスアイコンを右クリックし、LIS レポートの表示を選択し、LISサービスイベントダイアログを開きます。このダイアログにはエラー、および、転送に失敗したスライドが表示されます。エラーの理由も合わせて表示されます。通常、LIS エラーとして、データの紛失、データの矛盾(別のケースに同じアクセス番号が使用されているなど)、正式マーカーがBONDシステムに登録されていない事例などが挙げられます(11.2.4 正式マーカー名を参照)。

LIS サービスイベント ID 日付 イベント番号 詳細 ケース ID LS0012-45210 患者 ID PID120 医師 ID Dr Jones LIS スライドの追加ができません -バーコードがすでに使用されています マーカー ID **GFAP** 2017/01/24 14:33 7012 確認する マーカー2 ID 組織の種類 tost メッセージ ID 002.1 ケース ID LS0012-45210 PID120 患者 ID 医師 ID Dr Jones GFAP マーカー ID 2017/01/24 14:34 7007 組織型のマッピングができません 確認する 組織の種類 002.1 メッセージ ID バーコード ケース ID LS0012-45210 患者 ID PID120 2017/01/24 14:35 マーカー が存在しません 確認する 7006 医師 ID Dr Jones マーカー ID GFAP 閉じる

図 11-7:LISサービスイベントダイアログ

LIS設定によっては、エラーの修正、およびケースやスライドの再送信が可能です。なおLISから情報を再送信できない場合は、BONDソフトウェアでケースやスライドを直接作成してください。

エラーを読んだら、それに関連する確認ボタンをクリックすると、ダイアログから通知が削除されます。

ダイアログから全てのエラーメッセージが削除されると、画面から通知カウンタが消えます。

必要に応じて、まず、管理者画面の右上にあるLeica Biosystems ロゴをクリックして**BOND について**ダイアログを表示すると、LISサービスログでメッセージを見ることができます。続いて**サービスログ**をクリックして、**シリアル番号**のドロップダウンリストから***LIS***を選択します。オプションとして、期間を設定して**作成を**クリックすると、LISサービスログを作成できます。

11.5 ケースおよびスライドのデータ要件

ケースおよびスライドをインポートする BOND が LIS から取得する必要のあるデータを、以下のセクションに示します (11.5.1 ケースデータおよび 11.5.2 スライドデータを参照)。

スライドコメントを除いて、ではケースとスライドのデータを変更することはできません BOND。

11.5.1 ケースデータ

11.5.1.1 必須フィールド

BONDフィールド名	内容	一般的なLIS用語
ケースID	ケースの識別番号または識別名	アクセス番号
		注文番号

11.5.1.2 オプションのフィールド

BONDフィールド名	内容	一般的なLIS用語
患者名	患者名	患者名
		施設の割当ID(labAssId)
医師	担当の医師	医師名および/またはID番号
		主治医
		依頼した医師

11.5.2 スライドデータ

11.5.2.1 必須フィールド

BONDフィールド名	内容	一般的なLIS用語	コメント	
マーカー	一次抗体(IHC) またはプローフ(ISH)	一次抗体(IHC) プローブ(ISH) マーカー(いずれか) 染色	正式名は、BONDシステム上に登録したLISとマーカーにより指定されたマーカー間のリンクを提供しています。正式名は、LISで指定された各マーカーを指定する必要があります。11.2.4 正式マーカー名を参照。	
				各マーカーには、デフォルト染色と前処理プロトコールがあり、必要に応じてで変更することができますBOND。

11.5.2.2 オプションのフィールド

BONDフィールド名	内容	一般的なLIS用語	コメント
[LISバーコード] 注意:バーコードはの ユーザーに対しては表示されません BOND。	各LISスライドに与えられた固有のIDバーコード(削除されたスライドのIDは再利用できません)	バーコード	BOND がスライドを認識するために、完全な ID バーコードが提供されている必要があります。これはLIS のワークフロー1を使用するときに必要になります (11.8 ワークフローを参照)。
組織の種類	テストまたは コントロール 組織(陽性または陰性)	テストタイプ	LIS から情報が提供されない場合には、デフォルトで「テスト」となります。6.2.1 コントロール組織を参照。
コメント	スライドに関連 するコメントまたは指示	コメント	LISによってLISスライドのアップ デートが送信された場合、既 存のスライドコメントが新規ス ライドコメントで修正されま す。

11.6 LISへのスライドデータの返信

BOND LIS-ip は、LIS にスライドステータスをレポートすることができます。BOND LIS-ip は、以下の情報をレポートできます。

- スライド作成完了 指定のスライドは BOND ソフトウェア内で作成済です
- 印刷されたスライド-指定のスライドはラベルが印刷されました
- 進行中のスライド-指定のスライドは現在処理中です
- スライド処理完了 指定のスライドは処理が完了しました(エラーの有無にかかわらず) \
- 削除されたスライド-BONDシステムから削除された特定のスライド。

11.7 スライドラベル

検査用のスライドにはそれぞれ識別ラベルが必要です。ラベルに基づき、正しいケースと検査情報に照合することができます。ほとんどの簡単なワークフローでは、LIS スライドにはLIS が印刷したラベル(「LIS スライドラベル」)があり、これらのラベルは BOND システムで認識されます。しかし、これは以下の場合に限ります。

- 1 LISが BOND システムの各 スライドについて一意 なバーコードを提供していて、かつ
- 2 LISプリンターがBONDシステムがサポートしている6種類のバーコードフォーマットのうちいずれかを使用しているとき。

LIS がこの要件を満たさない場合でも、BOND システムは、LIS スライドに、専用の「BOND-LISスライドラベル」を作成することができます。この場合、BOND システムを、BOND システムで印刷されたラベルがあるLIS スライドのみが処理されるように設定することもできます。これは管理者のLIS画面で設定されます。10.2 LISを参照のこと。

別の方法として、外部のラベラーで作成したラベルや手書きのラベルを使用することもできます。これらのラベルは、処理前にBONDシステム上で手動で識別する必要があります(5.1.5.2 オンボードスライドの手動識別を参照)。

11.8 ワークフロー

それぞれのLIS-ip の実装は高度にカスタマイズされていますが、主なLIS-ip オプションを元にしたBOND LIS-ip の一般的な説明も有益な情報となります。以下の表では4つのワークフローを示していますが、他のワークフローも使用可能です。その他のワークフローも使用可能です。各インストレーションについて施設ごとの包括トレーニングも提供されています。

ワークフロー	LISからのデータ	BONDシステムで入力 されたデータ	印刷されたラベル	ID
1	ケースおよびスライドのデータ (LISバーコード付き)	なし	LIS	自動
2	ケースおよびスライドのデータ	なし	BONDシステム	自動
3		追加スライド	BONDシステム	自動
4		なし	外部	補助

ワークフロー1 は、LIS とBOND システムをシームレスに統合しており、最も便利なワークフローです。BOND システムは自動的にLIS スライドを識別し、スライドにラベルを付け替えたり追加情報を入力したりすることなく処理を直ちに開始することができます。

1 2 クリーニングとメンテナンス (BOND-III および BOND-MAX のみ)

BOND-PRIME 処理 モジュールに関するクリーニングとメンテナンスの手順については、別書のBOND-PRIME ユーザーマニュアルを参照してください。

警告: クリーニングまたはメンテナンス作業を行う際には、必ず処理モジュールのスイッチをオフにしてください(ただし吸引プローブのクリーニング時やバルク溶液ロボットのクリーニング時を除
◊。

警告:免疫染色用試薬やin situ ハイブリダイゼーション用試薬の中には、有害なものがあります。続行する前に適切なトレーニングを受けるようにしてください。

- 1 試薬の取り扱い時や処理モジュールのクリーニング時には、ラテックスまたはニトリル製の手袋、ゴーグル、およびその他の適切な保護服を着用します。
- 2 試薬や凝縮液を取り扱ったり廃棄する際には、ラボ施設に適用される手順や法規を遵守してください。

警告:処理 モジュールにはヒーターや加熱面があるので、その付近に可燃物を置くと引火の危険性があります:

ヒーターの上やその付近に可燃物を置かないでください。

処理モジュールの加熱面の上に可燃物を置かないでください。

バルク容器を再充填または空にした後はキャップがきちんと閉まっていることを確認してください。

警告:スライド染色部品とその周辺装置に触らないでください.非常に高温になることがあり、ひどい火傷を負うおそれがあります。動作停止後20分間放置して、スライド染色ユニットとその周辺装置の温度が下がるまでお待ちください。

注意:取り外し可能な部品は、全て手作業でクリーニングしてください.損傷を避けるため、 部品の洗浄には、自動食器洗浄機を使用しないでください。クリーニングの際は、強洗剤、 研磨用洗剤、またはきめの粗い布や、研磨布は絶対に使用しないでください。

本章では、クリーニングとメンテナンスの手順について説明します。クライアントには、システム内の各処理モデュール用のメンテナンス画面があります。まず、メインウィンドウの左側にある処理モデュールタブをクリックしてシステムステータス画面を表示してから、メンテナンスタブをクリックします。

詳細については、5.3 メンテナンス画面を参照してください。BONDシステムを使用する際に、部品に漏れや摩耗や損傷がないか点検してください。本章に摩耗または損傷した部品の修理や交換について説明されている場合、それに従ってください。説明がない場合にはカスタマーサポートにご連絡ください。

メンテナンス

本章に記載の(ユーザーが実施する)通常のメンテナンス作業以外に、BOND-III サービス担当者が行う BOND-MAX とLeica Biosystems の処理 モデュールのメンテナンスを定期的に受けてください。

BOND-IIIおよびBOND-MAXの場合、年1回、または、スライドを15600枚処理するごとに(どちらか早い方)、BONDソフトウェアから、各処理モジュールのメンテナンスを手配するよう通知されます。

管理者の**処理モジュール**タブでメンテナンス完了ボタンを押すと、カウントがリセットされます(10.6.1 処理モデュール)。

本章の構成は以下のとおりです。

- 12.1 クリーニングとメンテナンススケジュール
- 12.2 バルク容器
- 12.3 Covertile
- 12.4 スライド染色 ユニット
- 12.5 処理 モデュールの再起動
- 12.6 吸引プローブ
- 12.7 洗浄ブロックとミキシングステーション
- 12.8 カバー、ドアおよびフタ
- 12.9 IDイメージャー
- 12.10 ドリップ・トレイ
- 12.11 スライドトレイ
- 12.12 バルク溶液 ロボットプローブ(BOND-IIIのみ)
- 12.13 シリンジ
- 12.14 電源 ヒューズ

12.1 クリーニングとメンテナンススケジュール

1台の処理モジュールにつき毎週約300枚のスライドを染色する場合、以下のスケジュールに従ってください。それ以上の処理枚数がある場合には、カスタマイズスケジュールを組むことができますのでカスタマーサポートまでお問い合わせください。

作業	セクション
毎日 - 作業開始時	
バルク廃液コンテナ中の廃液が半分以下であるかを確認*	12.2
バルク試薬 コンテナに数日分の染色に適切な量の試薬が充填されていることを確認します。*	12.2
毎日 - 作業終了時	
Covertilesのクリーニング	12.3
週1回の作業	
スライド染色 ユニットのクリーニング*	12.4
Covertile クランプの点 検	12.4
処理モデュールの再起動	12.5
メインロボット吸引プローブの払拭	12.6
洗浄ブロックとミキシングステーションの確認 - 必要に応じてクリーニングまたは交換	12.7
カバー、ドア(取り付けられている場合) およびフタのクリーニング	12.8
IDイメージャーのクリーニング	12.9
ハンディバーコードスキャナーのクリーニング	13.1
月1回の作業	
全てのドリップトレイのクリーニング*	12.10
ミキシングステーションの交換	12.7
バルク試薬コンテナのクリーニング	12.2
バルク廃棄コンテナのクリーニング	12.2
スライドトレイのクリーニング	12.11
バルク溶液 ロボットプローブのクリーニング(BOND-III)	12.12
スライドラベラーのクリーニング	13.2
シリンジの確認	12.13
プロンプトが表示されたら	
メインロボット吸引 プローブのクリーニング	12.6.1
シリンジの交換	12.13

^{*}必要に応じて、この作業をもっと頻繁に実行してください。

12.1.1 クリーニングとメンテナンスのチェックリスト

次のページには、メンテナンススケジュールが表形式で掲載されているので、これを印刷してチェックリストとしてお使いください。BOND洗浄液、ER1、ER2、脱パラフィン液のロット番号の記入欄があります。作業が終了したら、残りの欄にチェックまたは署名を記入してください。

クリーニングとメンテナンススケジュール

	月	火	水	木	金	土	日
毎日							,
バルク試薬コンテナの充填を確認							
BOND 洗浄液のロット番号							
ER1のロット番号							
ER2のロット番号							
脱 パラフィン液 のロット番号							
廃液コンテナの確認							
Covertilesのクリーニング							
週1回の作業		BOND-M	AX の場合	ì:			
スライド染色 ユニットのクリーニング*		外音	部廃液容	器にキャ	,ップが一 ⁻	つしかない	場合
Covertile クランプの点 検					咯 ラインの	接続をタ	して
メンテナンスの再 開			ら、緩めて				
吸引プローブの払拭						合、バルク で、最 <i>を</i> る	
洗浄ブロックとミキシングステーション のチェック		の端を所定の位置で持ち上げて、量を確認してください。 処理 モジュールから容器を取り外す 必要はありません。					
カバー、ドア(取り付けられている場合) およびフタのクリーニング							
IDイメージャーのクリーニング		̄*必要に - てください		指定回数	よりも頻う	繁にクリー	ーニングし
ハンディキャナーのクリーニング		(1500	10				
月1回の作業							
ドリップ トレイの クリーニング*							
ミキシングステーションの交換							
バルク試薬コンテナのクリーニング							
バルク廃棄コンテナのクリーニング							
スライドトレイのクリーニング							
バルク液ロボットプローブのクリーニング (BOND-IIIのみ)							
スライドラベラーのクリーニング							
シリンジの確認							
プロンプトが表示されたら		から					
吸引プローブのクリーニング		— の週					
シリンジの交換					の月		

12.2 バルク容器

警告:免疫組織化学用試薬やin situ ハイブリダイゼーション用試薬の中には、有害なものがあります。続行する前に適切なトレーニングを受けるようにしてください。

- 1 試薬の取り扱い時や処理モジュールのクリーニング時には、ラテックスまたはニトリル製の手袋、ゴーグル、およびその他の適切な保護服を着用します。
- 2 試薬や凝縮液を取り扱ったり廃棄する際には、ラボ施設に適用される手順や法規を 遵守してください。

警告:BOND 処理モジュールで使用される試薬の中には、発火性のものがあります。

処理モジュールの近くに炎や発火源を置かないでください。

バルク容器を再充填または空にした後はキャップがきちんと閉まっていることを確認してください。

少なくとも1日に1回はバルクコンテナのレベルを確認し、月1回バルク容器をクリーニングします.詳細は次を参照:

- 12.2.1 コンテナのレベルを確認
- 12.2.2 バルク容器を充填する、または、空にする
- 12.2.3 バルク容器のクリーニング
- 12.2.4 外部廃液容器(BOND-MAXのみ)

12.2.1 コンテナのレベルを確認

毎日始業時にバルク容器のレベルを確認します。また、夜間または長時間の処理を行う場合、開始する前に確認してください。処理量の多い施設では、1日に2回バルクコンテナの確認を予定に組み込む必要があるかもしれません。

BOND-III と現行モデルの BOND-MAX 処理モジュール(および全ての BOND-MAX 外部廃液容器)では、液量がコンテナの壁面を通して見えます。コンテナが不透明である BOND-MAX モデルの場合、コンテナの端を所定の位置で持ち上げて、量を推定します(処理モジュールからコンテナを取り外す必要はありません。取り外すと、再び取り付けた際に、流路系のプライミングが開始されます)。

システム状態画面のアイコンは、BOND-IIIのバルク容器レベルの目安になり、BOND-MAXで廃液レベルが上昇したり試薬レベルが低下した際の通知に用いられます。このアイコンは、レベルの確認または通知の表示の目的にのみ使用してください。毎日の点検の代わりにはなりません。

BOND-III 処理 モジュールにはバルク容器 照明 システムが取り付けられています(バルク容器 照明 システム(BOND-III)(51ページのセクション)を参照)。

以下の状態になったら、コンテナを補充するか空にします:

- 廃液が半分以上になったらコンテナを空にする
- 試薬コンテナに再充填して試薬量が適切なことを確認します。

12.2.2 バルク容器を充填する、または、空にするを参照。

警告:毎日始業時に、バルク容器のレベルを確認して、必要に応じて空にするかまたは補充します(もっと頻繁に必要な場合-上記の説明を参照)。これを怠ると、処理が一時停止し、染色に支障を来すことがあります。

12.2.2 バルク容 器 を充 填 する、または、空 にする

バルク容器のレベルを確認する場合、廃液が半分以上になっていたら廃液コンテナを空にして、試薬コンテナを適切な量になるまで充填します。バルク容器を補充または空にした時にこぼれた溶液を必ず拭いてください。コンテナとキャップの外側をクリーニングしてから、処理モジュールに戻します。

個別の手順に関しては、以下を参照してください。処理中にコンテナを空にするか補充する必要がある場合は、12.2.2.5処理中の節に説明されています。

- 12.2.2.1 バルク試薬の再充填 BOND-III
- 12.2.2.2 ハザード廃液の廃棄 BOND-III
- 12.2.2.3 標準廃液の廃棄 BOND-III
- 12.2.2.4 ハザード廃液の廃棄とバルク試薬の再充填 BOND-MAX
- 12.2.2.5 処理中

BOND-MAX 外 部 コンテナを空 にする方法 については、12.2.4 外 部 廃 液 容 器 (BOND-MAXのみ)を参照してください。

警告: 容器を再充填または空にしたら、処理モデュール内の同じ場所に戻します。 さもないと、試薬が汚染され、染色が失敗します。

警告:バルク試薬容器のタイプを変更しないでください。さもないと、試薬が汚染され、染色が失敗します。

注意:バルク容器を無理に所定の位置に戻さないでください。容器 および液体 センサーが損傷 することがあります。

12.2.2.1 バルク試薬の再充填 - BOND-III

BOND-III バルク試薬 コンテナは、処理 モジュール内 に設置したままで充填が可能です。バルク容器 キャビティから取り外す必要 はありません。

- 1 バルク試薬容器のキャップを回して開き、容器を充填します。
- 2 容器が一杯になったら、キャップを戻して締め付けます。

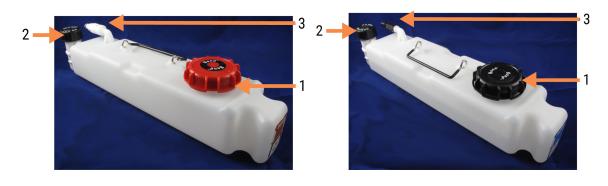
警告: BOND-III 処理 モジュールのコンテナに試薬を充填するとき漏斗を使用する場合は、漏斗が清潔であることを確認してください。さもないと、試薬が汚染され、染色が失敗します。

12.2.2.2 ハザード廃液の廃棄 - BOND-III

- 1 処理 モデュールが作動していないことを確認してください。(ただし、処理中に廃液コンテナが満杯になったとの通知があった場合には、その場合の手順に従ってコンテナを空にします。12.2.2.5 処理中も参照)。
- 2 バルク容器キャビティから容器を引き外します。
- 3 キャップを開いて各施設の規定にに従って廃液を処理してください。
- 4 キャップを戻して固く締めます。
- 5 コンテナを処理 モジュールに戻します。まず、キャビネットの後部にあるコネクタにコンテナのコネクタがは まり込んだと感じるまで軽く押し込みます。次に、完全にはまり込むまでしっかりと押して、漏れないよう にします。

12.2.2.3 標準廃液の廃棄 - BOND-III

標準廃液 コンテナは2個あるので、一杯になったコンテナは (一杯になるとシステムステータス画面にコンテナアイコンが表示されます)、処理中を含めて、いつでも取り外すことができます (5.1.3.6 バルク容器のステータスを参照)。ただし、処理モジュールの作動中は、絶対に両方のバルク廃液容器を取り外さないでください。また、システムステータス画面にコンテナが一杯になったことが表示されない場合は、処理が終了するまでコンテナを取り外さないようお勧めします。バルク廃液コンテナを取り出すことができるようになったら、上の手順(2)の指示のハザード廃液の廃棄方法に従ってください。


図 12-1: 廃棄容器を所定の位置に戻す

12.2.2.4 ハザード廃液の廃棄とバルク試薬の再充填 - BOND-MAX

- 1 処理 モデュールが作動していないことを確認してください。(ただし、処理中に廃液コンテナが満杯になったとの通知があった場合には、その場合の手順に従ってコンテナを空にします。12.2.2.5処理中も参照)。
- 2 バルク容器 キャビティから容器 を引き外します。

図 12-2: BOND-MAX ハザード廃液容器(左) とバルク試薬容器(右)

凡例

- 1 充填/空キャップ (最近のハザード廃液容器では青色のキャップ)
- 2 液体レベルセンサー
- 3 コネクタ

3 コンテナの充填または廃棄

- 廃棄の際は、充填/廃棄キャップ(図 12-2の項目1)を開けて、各施設の手順に従って廃液を処理してください。
- バルク試薬を充填するには、水平面にコンテナを置き、充填/廃棄キャップ(図 12-2の項目1)を開けて、キャップがねじ込まれる首の部分のすぐ下まで充填します。

注意:損傷する可能性があるため、液体レベルセンサーのキャップをバルク容器から取り外さないでください。バルクコンテナは、充填/廃棄キャップからのみ廃棄したり再充填します。

- 4 キャップを戻して固く締めます。
- 5 コンテナを処理 モジュールに戻します。まず、キャビネットの後部にあるコネクタにコンテナのコネクタがは まり込んだと感じるまで軽く押し込みます。次に、完全にはまり込むまでしっかりと押して、漏れないよう にします。

12.2.2.5 処理中

毎日バルクコンテナの確認が行われている場合(夜間や長時間の処理の前に追加の確認、また処理量の多い施設の場合、定期的な追加確認を行っていれば)、処理中に廃液コンテナが満杯になったり、試薬コンテナが空になることはありません。ただし、処理中に上のいずれかが起きた場合は、コンテナを空にするかあるいは充填する必要があります。以下の説明をよく読んで、正しい手順を確認してください。

廃液容器が満杯になった場合 - BOND-MAX

処理中に廃液容器がほぼ満杯になると、情報記号 がシステムステータス画面の該当するコンテナのアイコン上に表示されます。

直ちにコンテナを空にします。施設で規定されている標準安全手順と廃棄物処理手順を全て順守します。 迅速に処置を行えば、処理の一時停止を回避したり、一時停止の時間を短縮したりできます。処理を一時停止すると、染色に支障を来す可能性があります。

コンテナを空にするために処理を一時停止した場合、または処理モデュールが自動的に一時停止するまで

作動を継続した場合、アラーム 🛕 (点滅) または警告記号 👽 がコンテナのアイコン上に表示されます。 上記の説明および手順に注意を払って、できる限 り早 🕻 空にした容器を戻します。

イベントレポートを作成し、処理の一時停止によって受けた影響を確認します。

試薬 コンテナの廃棄 - BOND-MAX

バルク試薬 コンテナがほぼ空になると、通知記号**じ**が**システムステータス**画面の該当するコンテナのアイコン上に表示されます。

- 1 プロトコールステータス画面を開き、処理モジュール上の各処理の現在および次のステップを表示します。
- 2 現在残量の低いバルク試薬を使用して処理を実行している場合、あるいはまもなく残量の低いバルク試薬が使用される場合は、その試薬を使用する処理ステップが完了するまで待ってから、充填します。
- 3 そのバルク試薬を使用する処理ステップが完了したら、(全ての標準安全手順に従って)コンテナを取り外し再充填した後、できる限り早く元の位置に戻します。

時間を節約するため、通常の最高レベルまで試薬を充填する必要はありません。

警告:処理中にBOND-MAX バルク容器を充填する必要がある場合、必ずプロトコールの状態画面を確認し、その容器が使用されていないか、またはすくに使用されないことを確認します。これを怠ると、スライド処理に支障を来すことがあります。充填した後、コンテナを直ちに元の位置に戻します。

12.2.3 バルク容器のクリーニング

以下のクリーニングは月1回行います。

12.2.3.1 ER1、ER2、BOND 洗浄液、および脱イオン水の容器

- 1 ER1、ER2、BOND 洗浄液、および脱イオン水のバルク試薬容器を空にします。
- 2 容器を洗剤で洗浄し、脱イオン水で十分にすすいでください。
- 3 新しい試薬を充填して処理モジュールに戻す前に、コンテナを乾燥させます。

12.2.3.2 脱パラフィンおよびアルコールコンテナ

- 1 脱 パラフィンおよびアルコールバルク試薬 コンテナを空にします。バルク試薬 コンテナの脱 パラフィンおよびアルコールの廃棄は、各施設の認可手順に従ってください。
- 2 各容器に新しい試薬を少量入れ、液を容器の壁の周囲で動かして汚染物質を除去します。完了したら容器を空にします。廃液の廃棄は各施設の認可手順に従ってください。

アルコールまたは脱パラフィンのコンテナには水や洗剤を入れないでください。

3 新しい試薬をバルク容器に充填し、処理モジュールに戻します。

12.2.3.3 バルク廃液容器

- 1 廃液容器を空にします。廃液の廃棄は各施設の認可手順に従ってください。
- 2 廃液容器 を0.5%(w/v) の漂白溶液 または洗剤でクリーニングし、脱イオン水で十分にすすいでください。
- 3 廃液容器を処理モジュールに戻します。

12.2.4 外部廃液容器(BOND-MAXのみ)

毎日始業時にBOND-MAX 9 L 外部標準廃液容器を空にして、夜間または長時間の処理の前にレベルを確認します。半分またはそれ以上の場合は、廃棄します。コンテナのラベル上に、半分のレベルを示す白い水平の線が引いてあります。 図 12-3 を参照。

図 12-3: BOND-MAX 9 L 外 部 標 準 廃 液 容 器

凡例

- 1 充填/空キャップ
- 2 半分レベル

この容器 を、月1回、その他のバルク容器 と同様にクリーニングしてください(12.2.3 バルク容器 のクリーニングを 参照)。

1 処理 モジュールが作動していないことを確認してください。(ただし、処理中に廃液コンテナが満杯になったとの通知があった場合には、その場合の手順に従ってコンテナを空にします。12.2.2.5 処理中も参照)。

2 コンテナのコネクタがに示すような形式の場合図 12-4(センサーのコネクタによっては、図示のような銀色ではなく、黒であることに注意):

図 12-4:

凡例

- 液体レベルセンサーコネクタ
- 2 流路コネクタ

- a 親指でセンサーコネクタ(1)上の赤いラッチを上げて、キャップからコネクタを引き抜きます。
- b 流路 コネクタ(2)の金属製 ボタンを押して、キャップからコネクタを引き抜きます。
- 3 充填 / 空キャップを外してコンテナを空にします。コネクタ付きのキャップを取り外さないでください。廃液の廃棄は各施設の認可手順に従ってください。
- 4 充填/空キャップを元に戻し、しっかりと締めて、処理モジュールに戻します。
- 5 カチッと音がするまで流路コネクタをキャップのコネクタに押し込んでください。
- 6 センサーコネクタを再接続します。キャップコネクタの基部にコネクタを押し下げます。

警告:外部廃液容器は満杯になると重くなります。

外部廃液容器を空にする時は、適切な持ち上げ方をしてください。

注意:損傷を避けるため、必ずセンサーと流路コネクタを外してから、コンテナを空にします。

12.3 Covertile

Covertile の使用後は毎回 クリーニングしてください(Leica Biosystems Covertile クリーニングラックが使用できます)。Covertile は、破損や激い脱色がなく正しくクリーニングされていれば、25回まで再使用できます。破損したり、染色の質が劣化したときは廃棄してください。

12.3.1 DABの汚れを除去 (オプション)

- 1 0.5% (w/v)の次亜塩素酸ナトリウムを脱イオン水に溶かした未使用の溶液に30分以上浸漬します。
- 2 取 り出して、清浄 な脱イオン水に10分間浸漬します。
- 3 標準クリーニングを行います(下記参照)。

12.3.2 標準 クリーニング (必須)

- 1 100% IMS (工業用変性アルコール)、エタノール、または試薬級アルコールに10分以上浸漬します。
- 2 30秒間攪拌して、取り出します。
- 3 乾燥
 - 糸 くずの出ない柔らかい布で拭き取るか、
 - 自然乾燥させてください。
- 4 Covertileを精査して、欠けたり亀裂が入ったり、歪んでいないことを確認します。少しでも異常があれば廃棄してください。

12.4 スライド染色 ユニット

警告:処理 モジュールにはヒーターや加熱面があるので、その付近に可燃物を置くと引火の危険性があります:

- ヒーターの上やその付近に可燃物を置かないでください。
- 処理 モジュールの加熱面の上に可燃物 を置かないでください。
- バルク容器を再充填または空にした後はキャップがきちんと閉まっていることを確認してください。

警告:スライド染色部品とその周辺装置に触らないでください.非常に高温になることがあり、ひどい火傷を負うおそれがあります。動作停止後20分間放置して、スライド染色ユニットとその周辺装置の温度が下がるまでお待ちください。

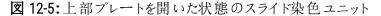
注意:指定の部品は全て手作業でクリーニングしてください。損傷を避けるため、部品の洗浄には、自動食器洗浄機を使用しないでください。クリーニングの際は、強洗剤、研磨用洗剤、またはきめの粗い布や、研磨布は絶対に使用しないでください。

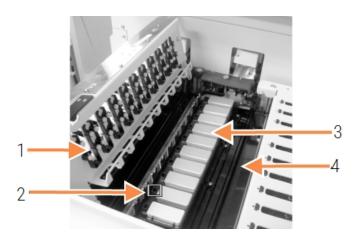
注意:上部プレートのクリーニングまたは取り外しを行う前に、バルク溶液ロボット(BOND-III)が処理モジュール後部の所定位置にあり、スライド染色ユニットに沿った位置にないことを確認してください。

注意: 綿棒の先端が外れて詰まりの原因となることがありますので、洗浄ブロックの穴の内側やスライド染色ユニットのウィッキングポストをクリーニングする際には、Qチップなどの綿棒を使用しないでください。

標準クリーニング

スライド染色 ユニットは毎週 クリーニングしてください。汚れが見られる場合にはもっと頻繁にクリーニングしてください。


70% アルコール (できる限 り少なく)で湿らせた糸くずの出ない柔らかい布を使用してください。落ちにくい汚れの場合、BOND 洗浄液 (できる限 り少なく)でクリーニングした後脱イオン水ですすいでください。


BOND-III の場合、バルク溶液ロボットガイドレールを拭いてください(図 12-6の項目 3)。

上部プレートを開き(上部プレートの取り外し(290ページのセクション)を参照)、次の部分をクリーニングしてください。

- ヒーターパッド
- 排出ポートとウィッキングポスト
- ヒーターパッド間の部分
- パッド周囲のドリップトレイ

排出ポート(ポート周囲の小さなウィッキングポストを含む)に異物がなく、傷などの損傷がないことを確認してください。これらの部品および、スライド染色ユニットの他の部品に損傷があった場合、カスタマーサポートにご連絡ください。

凡例

- **1** Covertile クランプ
- 2 排出ポートとウィッキングポ スト
- 3 ヒーターパッド
- 4 パッド周囲のドリップトレイ

上部プレートを開いて、プレート下側のCovertileクランプを検査し、バネの足が自由に動くことを確認します。押したときにクランプのバネが戻らない場合は、カスタマーサポートに交換を依頼してください。

上部プレートの取り外し

1 処理 モジュールが待機状態であり、電源がオフであることと、スライドトレイがロードされていないことを確認してください。

2 上部プレートを押し下げて開き、両端青いツイストファスナーを反時計回りに1/4回転回します(図 12-6と図 12-7の項目 1)。上部プレートを開いてヒンジの部分に合わせます(処理モジュールに向かって上部プレートの右側が開きます)。

図 12-6: BOND-III 上部プレート

凡例

- 1 ツイストファスナー
- 2 ピボットヒンジ
- 3 バルク溶液ロボットガイドレール

図 12-7:BOND-MAX 上部プレート

凡例

- 1 ツイストファスナー
- 2 ピボットヒンジ

3 上部プレートを完全に外すには(この作業は一般のクリーニングでは不要)、プレートの両端のバネ仕掛けのピボットファスナーを引き(図 12-6の項目 2 と図 12-7)、プレートを持ち上げてスライド染色ユニットから取り外します。

図 12-8:上部プレートのピボットファスナーを緩める

上部プレートの交換

BOND-IIIのスライド染色ユニットの上部プレートには番号が付いています。必ず正しい上部プレートを正しいスライド染色ユニットに配置してください(処理モジュールに向かって左側のスライド染色ユニットが1番になります)。

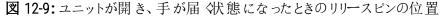
- 1 スライド染色 ユニットのピボットポイントを見つけます。上部プレートを開いた状態で保持し、ピボットファスナーのいずれかをこのピボットポイントに配置します。
- 2 もう一方のピボットファスナーを引き、プレート端を所定の位置に配置して、固定具を緩めます。
- 3 プレートを閉じ、プレートの両端の穴が位置決めピンに入っていることを確認します。
- 4 上部プレートを押し下げて、ツイスト固定具を時計回りに回転させます。4分の1回転で、しっかりと締まるはずです。

12.4.1 スライド染色 ユニットを手動 でロック解除

スライド染色 ユニットは、手動でロック解除できます。これにより、停電時でもスライドを取り外すことができます。

警告:可動部を含むスライド染色部品は、重度の傷害の原因となることがあります.スライド染色ユニットを手動でロック解除しようとする前に、以下の手順に従ってください。処理モデュールの電源スイッチを切り、主電源を切り、電源プラグをコンセントから抜きます。

- 12.4.1.1 BOND-III
- 12.4.1.2 BOND-MAX


12.4.1.1 BOND-III

警告:シリンジポンプモジュール(BOND-III) は重量があり、放すと落下する可能性があります. この手順は、この危険性について熟知し適切なトレーニングを受けたオペレーターのみが実行できます。

BOND でスライド染色ユニットを手動でロック解除するには、以下の手順に従ってください。

- 1 主電源をオフにし、電源ケーブルをコンセントから抜いてください。
- 2 付属の3mm 六角レンチで、シリンジモジュールカバーを固定している4本の六角ねじを緩。め、カバーを取り外して、リリースピンやモジュールハンドルへの接近を容易にします。
- 3 シリンジポンプ1と4の横にある2本のリリースピンを見つけます。

- 4 カチッと音がしてモジュールが下がるまで、2本のピンを手前に引きます。モジュールが前方に移動する際に、シリンジヘッドの流路系のチューブを引っ張ったり挟まないように注意してください。
- 5 スライド染色 ユニットに手が届く程度まで、シリンジポンプモジュールが開きます。

6 スライド染色ユニットのすぐ下にマニュアルリリースノブがあります。

図 12-10: マニュアルリリースノブ

- 7 図 12-10 に示 す方 向 に ノブを回 します。 Covertile がスライド上 を移動 するのにつれて、ユニット全体 とトレイが上 に移動 します。
- 8 回しにくくなるまでリリースノブを回してください。このとき、スライドトレイがユニットから取り外せるはずです。
- 9 各施設の手順に従って、スライドを保管してください。
- 10 シリンジポンプモジュールを定位置にゆっくりと押し戻します。シリンジヘッドの流路系のチューブを引っ張ったり挟まないように注意します。
- 11 クリック音がして、モジュール両端の2本のピンがロック位置に戻ったことを確認します。

注意: 処理を開始したり処理モデュールを初期化する前に、シリンジモジュール (BOND-III) が完全に閉じていることを確認してください。 処理中にシリンジが損傷することがあります。

12 シリンジモジュールカバーを取り付けて元に戻し、4本の六角ねじで締めます。

処理 モジュールの電源 を入れる前に、プロトコールの状態を確認してください(5.2 プロトコールの状態画面を参照)。

電源を投入すると、処理モジュールは初期化を行い、ユニットの状態を検出し、使用可能な状態になるために必要な処置を行います。

初期化後、スライド染色ユニットはロック解除の状態になり、プロトコールステータス画面にはどのステップも表示されません。BOND-III で残りの処理を行うことも、マニュアルで行うことも可能です。

12.4.1.2 BOND-MAX

BOND-MAX のスライド染色 ユニットを手動でロック解除するには、以下の手順に従ってください。

- 1 主電源をオフにし、電源ケーブルをコンセントから抜いてください。
- 2 バルク容器のドアを開き、バルク容器を取り外します。
- 3 バルク容器キャビティ上面のトレイをスライドさせて取り出します。
- 4 スライド染色 ユニットのすぐ下にマニュアルリリースノブ(図 12-10を参照)があります。
- 5 に示す方向にノブを回します図 12-10。このとき、Covertile がスライド上に移動し、ユニット全体とトレイが上方に移動します。
- 6 回しにくくなるまでリリースノブを回してください。このとき、スライドトレイがユニットから取り外せるはずです。
- 7 各施設の手順に従って、スライドを保管してください。
- 8 必要に応じて上下のドリップトレイをクリーニングします。上部ドリップトレイをバルク容器キャビティに再挿入するときは、45度に曲がっているトレイ端を手前に向け、上方向に曲がった状態で挿入します。
- 9 バルク試薬容器を再挿入します。
- 10 バルク容器キャビティのドアを閉じます。

処理 モジュールの電源 を入れる前に、プロトコールの状態を確認してください(5.2 プロトコールの状態画面を参照)。

電源を投入すると、処理モジュールは初期化を行い、ユニットの状態を検出し、使用可能な状態になるために必要な処置を行います。

初期化後、スライド染色ユニットはロック解除の状態になり、プロトコールステータス画面にはどのステップも表示されません。BOND-MAXで残りの処理を行うことも、マニュアルで行うことも可能です。

12.5 処理モデュールの再起動

処理 モデュールは週1回、シャットダウンして再起動してください。これは、処理 モデュールがシステムの自己診断チェックを完了できるようにする上で重要な措置です。

シングルシートBOND コントローラーは、定期的に電源を切って再起動する必要はありません。ただし、BOND ソフトウェアの実行速度が著しくが遅くなった場合、Windows のスタートメニューでコントローラーを再起動する必要があるかもしれません。

BOND-ADVANCE システムが装備されている場合、16.1 BOND-ADVANCE システムの再起動を参照してください。

処理モデュール

処理 モジュールで、ロード中でないこと、またスケジュールを処理中でないことを確認してから、処理 モジュールの右側の電源スイッチをオフにします。30 秒後に再び電源をオンにします。BOND システムを起動すると、流体系がプライミングされ、様々なシステム試験が実行されます(2.2.2 処理 モデュールの初期化を参照)。

処理 モジュールの電源をオフにしないときは、流路系のプライミングを部分的に実行することができます(流路系のクリーニングを参照)。

流路系のクリーニング

メンテナンス画面の流路系のクリーニングボタンを押すと、バルクコンテナから流路系がプライミングされます (処理モデュールの起動時の初期化の一環)。流路供給システム内の目詰まりや空気の混入の疑いがある場合には、通常の作業を実行してください。

- 1 処理 モジュールが待機状態であり、処理がロードされておらず、その予定がなく処理中でもないことを確認します。
- 2 臨床 クライアントで処理 モデュールのタブを選択して、システムステータス画面を表示します。
- 3 まず、メンテナンスタブをクリックしてから、流路系のクリーニングボタンをクリックします。
- 4 確認のプロンプトが表示されたら、はいをクリックします。
- 5 流路系システムのプライミングには、数分かかることがあります。

12.6 吸引プローブ

吸引プローブは、通常の動作の一部として、1つの試薬に接触した後で、次の試薬と接触する前に、洗浄ブロックで自動的にクリーニングされます。ただし、それ以外にも、毎週、吸引プローブの払拭、BOND吸引プローブクリーニングシステムでクリーニングするようお勧めします。クリーニングシステムの試薬はBONDシステムに対して最適化されており、BONDソフトウェアは、最大の洗浄効率が得られるようなクリーニングプロトコールを使用しています。プローブのクリーニングや交換の時期になると、BONDソフトウェアがユーザーに警告します。

警告:処理モデュールがオンになっているときはメインロボットアームは取り外さないでください。 ロボットの配置が狂って染色の効果が低下する恐れがあります。

ロボットが動いた場合には、処理モジュールの電源をオフにして、30秒待ってから再度初期化します。

以下を参照:

12.6.1 吸引プローブのクリーニング

12.6.1 吸引プローブのクリーニング

拭く前に必ず処理モデュールの電源を切り、プローブを曲げないように注意してください。70%のアルコール溶液で湿らせた糸くずのでない布やアルコールパッドで、毎週、吸引プローブの外部を拭いてください。吸引プローブに接続されているチューブを点検して、チューブがねじれていないか、また、チューブの中に異物がないか確認してください。チューブは清浄でなければなりません。

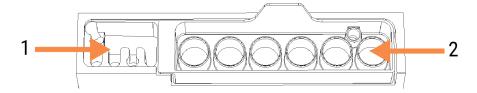
BOND ソフトウェアは、スライドを300 枚処理 するごとに、BOND 吸引 プローブのクリーニングシステムで プローブをクリーニングするよう通知 します(12.6.2 吸引 プローブのクリーニングの実行 を参照)。クリーニングが実行 されたりプローブが交換 されると、自動的 にカウントがリセットされます。

BOND 検出システムと同じ方法で、吸引プローブクリーニングシステムをBOND システムに登録してください (8.3.3 試薬と試薬システムの登録を参照)。またソフトウェアはクリーニングシステムの使用について記録しており、各システムで15回のクリーニングが可能です。

クリーニングシステムの試薬の効力を維持するためには、使用時のみに処理モデュールにロードします。他の試薬や試薬システムが処理モジュールにロードされている間は、吸引プローブのクリーニングはできません。また、クリーニングシステムを処理モジュールにロードしている間は、スライド処理を開始できません。

12.6.2 吸引プローブのクリーニングの実行

BOND 吸引 プローブクリーニング システムを用いて吸引 プローブをクリーニングするには、以下 の指示 に従ってください。


クリーニングのプロトコールには、約20分かかります。

- 1 処理 モジュールが待機状態であり、処理がロードされておらず、その予定がなく処理中でもないことを確認します。
- 2 処理モジュールから全ての試薬または試薬システムトレイを取り除きます。
- 3 BOND 吸引プローブクリーニングシステムを処理モジュールの試薬トレイに挿入します。
- 4 臨床 クライアントで処理 モデュールのタブを選択して、システムステータス画面を表示します。
- 5 まず、メンテナンスタブをクリックしてから、吸引プローブのクリーニングボタンをクリックします。
- 6 プロンプトが表示されたら、**はい**をクリックします。クリーニングが開始されます。 クリーニングプロトコールが開始され、処理モジュールタブの「クリーニング」アイコンに表示されます。
- 7 クリーニングの終了が通知されるまで待ちます。
- 8 試薬トレイからBOND吸引プローブクリーニングシステムを取り外します。
- 9 通常操作を継続するには、「クリーニング完了」ダイアログで OK をクリックします。

12.7 洗浄ブロックとミキシングステーション

ミキシングステーションには、試薬を混合するためのウェルが6つあります。ミキシングステーションは、洗浄ブロックにぴったりと挿入して使います。

図 12-11:洗浄エリア(1) および ミキシングステーション(2) を装着した洗浄ブロック(上面図)

警告:免疫染色用試薬やin situ ハイブリダイゼーション用試薬の中には、有害なものがあります。続行する前に必ず適切な安全トレーニングを受けるようにしてください。

混合ステーションは定期的に脱色および全体の状態を確認して、必要に応じて交換してください。ステーションは、通常のメンテナンスの一部として月1回交換してください。取り外す前に、かならず全ての処理が完了していることを確認してください。

ミキシングステーションを取り外すには、ミキシングステーション背面のタブを掴んで持ち上げて外します。

ミキシングステーションのクリーニング

ミキシングステーションが適切にクリーニングされていて、破損したりひどく変色していない限り、毎月の交換期日が来るまで、再利用することができます。

- 1 クリーニングが必要な場合、0.5%(W/V)の次亜塩素酸ナトリウムを脱イオン水に溶かした未使用の溶液に30分以上浸漬します。
- 2 取 り出して、清浄 な脱イオン水に10分間浸漬します。
- 3 試薬用のアルコールに最低10分間浸漬します。
- 4 30秒間攪拌して、取り出します。
- 5 自然乾燥させてください。

洗浄ブロックのクリーニング

糸くずの出ない布で洗浄ブロックを週1回をクリーニングしてください。

注意:綿棒の先端が外れて詰まりの原因となることがありますので、洗浄ブロックの穴の内側をクリーニングする際には、Qチップなどの綿棒を使用しないでください。

12.8 カバー、ドアおよびフタ

処理 モジュールのカバー、ドア(取り付けられている場合)、フタは、ダスターまたは布で週に1回 クリーニングします。

洗剤は使用しないでください。必要に応じて水を含ませた柔らかい布を使用してカバー、ドア、フタを拭き取り、ほこりがたまらないようにします。

カバー、ドア、フタに変形や損傷が認められる場合は、カスタマーサービスに交換を依頼してください。

12.9 IDイメージャー

メインロボットアームの ID イメージャーのウィンドウが常に清浄でなければ、スライドは正しく認識されません。 週1回、またはイメージャーが頻繁に ID を正しく認識できないときは、70%アルコール溶液を含ませた綿棒または糸くずの出ない布でウィンドウを拭いてください。

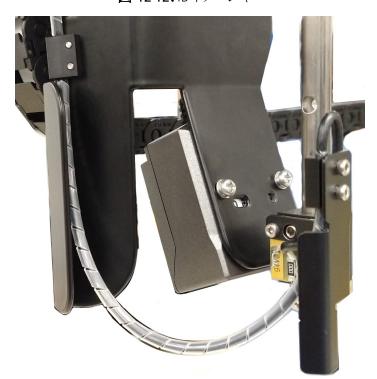


図 12-12:IDイメージャー

12.10 ドリップ・トレイ

ドリップトレイは、月1回 クリーニングしてください。 試薬や廃液がこぼれている場合には、もっと頻繁にクリーニングします。 流出量がかなり多い場合やトレイに塩が堆積する場合にはカスタマーサポートにご連絡ください。

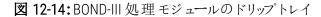
- 12.10.1 BOND-III バルク容器のドリップトレイ
- 12.10.2 BOND-III 処理 モジュールのドリップトレイ
- 12.10.3 BOND-MAX のバルク容器 ドリップトレイ

12.10.1 BOND-III バルク容器のドリップトレイ

BOND-III には、処理 モジュールの上下のバルク容器の下に、2 つのバルク容器 ドリップトレイがあります。 BOND-III のバルク容器のドリップトレイをクリーニングするには、以下の手順に従ってください。

- 1 処理モジュールが作動していないことを確認してください。
- 2 バルク容器を全て取り外します。

3 各バルク容器の重量センサーを保護している黒色のカバーを取り外します(図 12-13 を参照)。70%のアルコール溶液で湿らせた布またはガーゼで各カバーを拭き取ります。



- 4 70% アルコール溶液でドリップトレイを拭きます。 金属重量 センサーの露出面には手を触れないでください。
- 5 ドリップトレイをペーパータオルを使って乾燥します。
- 6 全てのバルク容器を拭き取って、正しい位置に戻します。

12.10.2 BOND-III 処理 モジュールのドリップトレイ

BOND-III には、処理 モジュールの下に3つめのドリップトレイがあります(下記の図 12-14を参照)。

処理モジュールのドリップトレイにアクセスするには、以下の手順に従ってください。

- 1 処理 モジュールの下にあるドリップトレイ(図 12-14を参照)を見つけて、トレイを引き出します。両手を使ってトレイの重量を支え、液体がこぼれないようにします。
- 2 トレイの内容物を空にして、各施設の規定に従って廃棄物を処理してください。

トレイには、後部の角に、内容物を流しやすくして漏れを防止するためにチャネルが付いています。

3 70%のアルコール溶液でトレイを洗浄し、正しい位置に戻します。

12.10.3 BOND-MAX のバルク容器 ドリップトレイ

BOND-MAX には、バルク容器キャビティ内のバルク容器の下にドリップトレイが1個あります。

バルク容器ドリップトレイにアクセスするには、以下の手順に従ってください。

- 1 処理 モジュールが作動していないことを確認し、全てのバルク容器を取り外します。
- 2 ドリップトレイを取り外し、70%のアルコール溶液で湿らせた布またはガーゼで各カバーを拭き取ります。
- 3 ペーパータオルを使用してドリップトレイの水分を拭き取り、正しい位置に戻します(縁が曲線になっている側が処理モジュールの前面になります)。
- 4 全てのバルク容器を拭き取って、正しい位置に戻します。

12.11 スライドトレイ

スライドトレイは週に1回、温かい石けん水で洗浄して水ですすいでください。スライドトレイを使用する前に、必ず乾いていることを確認してください。変形または損傷したトレイは交換してください。

12.12 バルク溶液 ロボットプローブ(BOND-IIIのみ)

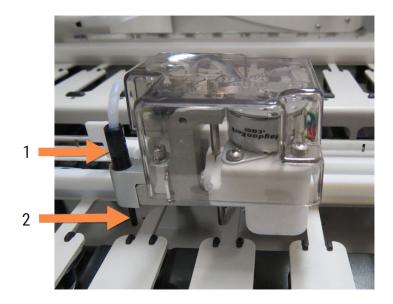
各 バルク溶液 ロボットのプローブは、月1回、70%アルコール溶液 を含ませた糸 くずの出ない布またはアルコールパッドでクリーニングする必要があります。

クリーニング中にプローブが変色していないか点検します。必要に応じて交換してください。

• 12.12.1 バルク溶液ロボットプローブのクリーニング

12.12.1 バルク溶液 ロボットプローブのクリーニング

バルク溶液 ロボットの分注プローブは月1回クリーニングを行います。プローブを曲げないように注意します。



警告:バルク液 ロボットは、ユーザーがクリーニングのためにアクセスできるようにスライド染色 部品 沿いを動きます。この手順は、この危険性について熟知し適切なトレーニングを受けたオペレーターのみが実行できます。

- 1 処理 モジュールが待機状態であり、処理がロードされておらず、その予定がなく処理中でもないことを確認します。
- 2 臨床 クライアントで処理 モデュールのタブを選択して、システムステータス画面を表示します。
- 3 まず、メンテナンスタブをクリックしてから、バルク溶液ロボットプローブのクリーニングボタンをクリックします。

4 「バルク溶液ロボットプローブのクリーニング」ダイアログの指示をよく読み、全てのスライドトレイをロックしてはいをクリックして継続します。

図 12-15:3 つのバルク溶液 ロボットプローブを全て70% アルコール溶液で拭き取ります

凡例

- 1 プローブチューブのコネクター
- 2 プローブ

- 5 3 つのバルク溶液 ロボットが全 て処理 モジュールの前方 に移動したら、処理 モジュールの電源 をオフにします。
- 6 70%アルコール溶液を染み込ませた柔らかい布かアルコールパッドで、プローブを静かに拭き取ります。 プローブの調整が狂わないように、慎重に実行してください。
- 7 ダイアログボックスで、クリーニングが成功したバルク溶液ロボットを選択して、終了をクリックします。どれもクリーニングしてない場合、**いずれもクリーニングされていない**ボタンをクリックします。
- 8 処理 モジュールが再起動します。初期化中、バルク溶液 ロボットが、処理 モジュール背面の定位置に 戻ります。

12.13 シリンジ

BOND ソフトウェアは、シリンジ(BOND-MAX) またはシリンジ(BOND-III)を半年ごとに、あるいはスライド 7800枚処理した時点のいずれか早い方で交換するよう通知されます(5.1.2 ハードウェアステータスを参照)。

シリンジを目視点検してください。特に、シリンジの上部とプランジャーの下部に漏れがないか、週一回、初期化中、または流路系のクリーニング実行中に確認します(12.5 処理モデュールの再起動を参照)。さらに、付属のチューブとコネクタも確認してください。漏れがある場合は交換します。

Leica Biosystems フィールドサービスエンジニアによるシリンジの交換をご希望の場合、カスタマーサポートにご連絡ください。ご自分でシリンジを交換する場合には以下の手順に従ってください。

警告:必ず保護服と手袋を着用。

- 12.13.1 BOND-III シリンジの交換
- 12.13.2 BOND-MAX 9ポートシリンジの交換

12.13.1 BOND-III シリンジの交換

シリンジの交換直後に異常のあるシリンジを1個交換する場合を除き、全部のシリンジを同時交換してください。


- 1 処理 モジュールが待機状態であり、処理がロードされておらず、その予定がなく処理中でもないことを確認します。
- 2 臨床 クライアントで処理 モデュールのタブを選択して、システムステータス画面を表示します。
- 3 まず、メンテナンスタブをクリックしてから、シリンジの交換ボタンをクリックします。
- 4 指示を読み、はいをクリックします。

注意:作業の前に、処理モデュールの電源がオフになっていることを確認してください。

- 5 付属の3mm 六角レンチで、シリンジモジュールカバーを固定している4本の六角ねじを緩。カバーを取り外します。
- 6 各シリンジで、シリンジクランプのつまみねじを緩め、クランプを下げます。
- 7 付属の2.5mm六角レンチで、プランジャー底面のプランジャーロックねじを取り外します。

図 12-16: 六角 レンチでプランジャーロックねじを緩める

一部のモデルでは、六角ネジでなく、つまみネジが付いています。

- 8 シリンジバルブからシリンジバレルを緩めます。処理モジュールからシリンジとクランプを取り外します。
- 9 クランプに新しいシリンジを通します。
- 10 処理 モジュールにシリンジとクランプを取り付けます。 バルブにシリンジをねじ込みます。
- 11 プランジャーロックスクリューを交換し、締め付けます。
- 12 シリンジ上部までクランプを持ち上げ、つまみねじを締め付けます。
- 13 シリンジモジュールカバーを取り付けて元に戻し、4本の六角ねじで締めます。
- **14** ダイアログボックスで、交換に成功したシリンジを選択して、**終了**をクリックします。どれも交換に成功してない場合、**いずれも交換されていない**ボタンをクリックします。
- 15 処理モジュールが再起動します。
- 16 処理モデュールの初期化中に、特にシリンジ上部やプランジャーの下で、漏れの有無を確認します。 漏れがある場合にはカスタマーサポートにご連絡ください。
- 17 新しいシリンジが正しく装着されたことを確認するには、テスト組織かコントロール組織を処理して、染色が正しく行われることを確認します。

12.13.2 BOND-MAX 9ポートシリンジの交換

- 1 処理 モジュールが待機状態であり、処理がロードされておらず、その予定がなく処理中でもないことを確認します。
- 2 臨床 クライアントで処理 モデュールのタブを選択して、システムステータス画面を表示します。
- 3 まず、メンテナンスタブをクリックしてから、シリンジの交換ボタンをクリックします。
- 4 指示を読み、はいをクリックします。

処理 モデュールは、シリンジから液体を除去し、交換用の位置にシリンジを配置します。処理 モデュールが から切断 されるまで待ってから、処理 モデュールの電源をオフにします。コントローラー(または BOND-ADVANCEのターミナル) はオフにしないでください。

注意:作業の前に、処理モデュールの電源がオフになっていることを確認してください。

5 シリンジクランプのつまみねじを緩め、クランプを下げます。

6 六角レンチで、プランジャーの底面にあるプランジャーロックねじを取り外します。

図 12-17: 六角 レンチでプランジャーロックねじを緩める

- 一部のモデルでは、六角ネジでなく、つまみねじが付いています。
- 7 シリンジバルブからシリンジバレルを緩めます。処理モジュールからシリンジとクランプを取り外します。
- 8 クランプに新しいシリンジを通します。
- 9 処理 モジュールにシリンジとクランプを取り付けます。バルブにシリンジをねじ込みます。
- 10 プランジャーロックスクリューを交換し、締め付けます。
- 11 シリンジ上部までクランプを持ち上げ、つまみねじを締め付けます。
- 12 ダイアログボックスではいをクリックし、シリンジの交換が成功したことを確定します。
- 13 処理モジュールが再起動します。
- 14 処理 モデュールの初期化中に、特にシリンジ上部やプランジャーの下で、漏れの有無を確認します。 漏れがある場合にはカスタマーサポートにご連絡ください。
- 15 新しいシリンジが正しく装着されたことを確認するには、テスト組織かコントロール組織を処理して、染色が正しく行われることを確認します。

12.14 電源 ヒューズ

レガシーの BOND-III および BOND-MAX 処理 モジュールには、2 つのメインヒューズと2 つのヒーター電源 ヒューズ があります。代替の BOND-III および BOND-MAX 処理 モジュールには、2 つのメインヒューズしかありません。 ヒューズの定格は、主電源によって異なります。ヒューズは裏面パネルにあります(2.2.13 後部 カバーを参照)。 レガシーの BOND-III では、以下のヒューズを使用しています。

ヒューズ	内容	100-240 VAC
F1	ヒーター電源	3AG T8A 250V UL
F2	システム電源	3AG T8A 250V UL
F3	AC電源(ニュートラル)	3AG T15A 250V UL
F4	AC電源(アクティブ)	3AG T15A 250V UL

代替のBOND-IIIでは、以下のヒューズを使用しています。

ヒューズ	内容	100-240 VAC
F3	AC電源(ニュートラル)	3AG T15A 250V UL
F4	AC電源(アクティブ)	3AG T15A 250V UL

レガシーのBOND-MAX 処理モジュールでは、以下のヒューズを使用しています。

ヒューズ	内容	100-240 VAC
F1	AC電源(アクティブ)	3AG T15A 250V UL
F2	AC電源(ニュートラル)	3AG T15A 250V UL
F3	24 VDC ヒーターサプライ	3AG T8A 250V UL
F4	24 VDC電源	3AG T8A 250V UL

代替のBOND-MAX 処理モジュールでは、以下のヒューズを使用しています。

ヒューズ	内容	100-240 VAC
F1	AC電源(アクティブ)	3AG T15A 250V UL
F2	AC電源(ニュートラル)	3AG T15A 250V UL

警告:ヒューズをバイパスしたり短絡させてはなりません。

ヒューズを交換する前に、処理モジュールをオフにして電源コードを外します。

ヒューズは標準部品とのみ交換し、ヒューズが何度も切れる場合にはカスタマーサービスにご連絡ください。

ヒューズを交換するには、以下の手順に従ってください。

- 1 処理 モジュールの電源 をオフにします。
- 2 また主電源をオフにし、主電源のプラグをコンセントから抜きます。
- 3 ヒューズカバーを回して外します。
- 4 ヒューズカバーを抜き、ヒューズを交換してください。正しい仕様のヒューズであることを確認してください。
- 5 ヒューズカバーを押して、時計回りに回すと、ヒューズが正しい位置に固定されます。締め過ぎないように注意してください。

13 クリーニングとメンテナンス(その他)

13.1 ハンディバーコードスキャナー

13.1.1 Symbolバーコードスキャナー

これらの手順は以前のSymbolバーコードスキャナーにのみ適用されます。最近のHoneywellまたはZebraバーコードスキャナーをお持ちの方は、13.1.2 Honeywellバーコードスキャナーまたは 13.1.3 Zebra DS2208 バーコードスキャナーを参照してください。

ハンディスキャナーは週1回クリーニングしてください。

- ウィンドウに研磨材等で触れないでください。
- ウィンドウに水やその他の洗浄液を直接吹き付けないでください。
- スキャナーのゴム製ノーズを外さないでください。

スキャナーのクリーニングは、以下の手順に従ってください。

- 1 最初に、スキャナーをコントローラーまたはターミナルから取り外します。
- 2 糸くずの出ない布を湿らせて、ほこりの粒子を拭き取ります。
- 3 70%アルコール溶液を湿らせた糸くずの出ない布でウィンドウを拭いてください。

警告:ハンディバーコードスキャナーには、レーザー装置が内蔵されており、重度の眼障害を生じる恐れがあります。

スイッチがオンになっている間は、スキャナーのウィンドウを覗き込まないでください。

13.1.1.1 Symbolバーコードスキャナーの設定

Symbolバーコードスキャナー(USB)を再初期化するためには、このページを印刷して良質なハードコピーを作成し、以下の各々のバーコードを順番にスキャンしてください。

図 13-1: Symbol スキャナー設定用 バーコード・スキャンシーケンス

スキャン1:全てのデフォルトを設定

スキャン2: code 128を有効にする

スキャン3: スキャンオプション

スキャン4: <DATA><SUFFIX>

スキャン5:入力

13.1.1.2 ブザー音量の設定

Symbolバーコードスキャナー用のブザー音量を設定するには、このページを印刷して良質なハードコピーを作成し、以下の希望のレベルに相当するバーコードをスキャンしてください。

図 13-2: Symbol スキャナーのブザー音量 バーコード

低音量

中音量

高音量

13.1.2 Honeywellバーコードスキャナー

これらの手順は最近のHoneywell バーコードスキャナーにのみ適用されます。以前のSymbol バーコードスキャナーをお持ちの方は、13.1.1 Symbol バーコードスキャナーを参照してください。 Zebra DS2208 バーコードスキャナーをお持ちの方は、13.1.3 Zebra DS2208 バーコードスキャナーを参照してください。

ハンディスキャナーは週1回クリーニングしてください。

- ウィンドウに研磨材等で触れないでください。
- ウィンドウに水やその他の洗浄液を直接吹き付けないでください。

スキャナーのクリーニングは、以下の手順に従ってください。

- 最初に、スキャナーをコントローラーまたはターミナルから取り外します。
- 糸くずの出ない布を水で湿らせて、ほこりの粒子を拭き取ります。
- 70%アルコール溶液を湿らせた糸くずの出ない布でウィンドウを拭きます。

ハンディバーコードスキャナーが正しく作動しない場合は、サービススタッフから、再初期化を指示されることがあります。なお、スキャナーのブザーの音量は調節できます。

13.1.2.1 Honeywellバーコードスキャナーの設定

Honeywellバーコードスキャナー(USB)を再初期化するためには、このページを印刷して良質なハードコピーを作成し、以下に示す順番でバーコードをスキャンしてください。

図 13-3: スキャナー設定用のバーコード

スキャン1: カスタムデフォルトを削除する

スキャン2: デフォルトを有効にする

スキャン3: Honeywellスキャナーの設定

13.1.2.2 ブザー音量の設定

Honeywellバーコードスキャナー用のブザー音量を設定するには、このページを印刷して良質なハードコピーを作成し、以下の希望のレベルに相当するバーコードをスキャンしてください。

図 13-4: Honeywell スキャナーのブザー音量 バーコード

低音量

中音量

高音量

ブザーをオフに

13.1.2.3 ハンズフリー方式での使用の設定

スキャナーをスタンドに置いてハンズフリー方式で標準的に使用する場合、バーコードを読み込ませるときにトリガーを押す必要はありません。

Honeywellバーコードスキャナーのハンズフリー方式での使用をONまたはOFFに設定するには、このページを印刷して良質なハードコピーを作成し、以下の希望の機能に相当するバーコードをスキャンしてください。

図 13-5: Honeywell スキャナーのハンズフリー方式での使用

ハンズフリー方式での使用をON

ハンズフリー方式での使用をOFF

13.1.3 Zebra DS2208 バーコードスキャナー

これらの手順は最近のZebraバーコードスキャナーにのみ適用されます。以前のSymbol バーコードスキャナーをお持ちの方は、13.1.1 Symbolバーコードスキャナーを参照してください。Zebraバーコードスキャナーをお持ちの方は、13.1.2 Honeywellバーコードスキャナーを参照してください。

ハンディスキャナーは週1回クリーニングしてください。

- ウィンドウに研磨材等で触れないでください。
- ウィンドウに水やその他の洗浄液を直接吹き付けないでください。

スキャナーのクリーニングは、以下の手順に従ってください。

- 最初に、スキャナーをコントローラーまたはターミナルから取り外します。
- 糸くずの出ない布を水で湿らせて、ほこりの粒子を拭き取ります。
- 70%アルコール溶液を湿らせた糸くずの出ない布でウィンドウを拭きます。

ハンディバーコードスキャナーが正しく作動しない場合は、サービススタッフから、再初期化を指示されることがあります。なお、スキャナーのブザーの音量は調節できます。

13.1.3.1 Zebraバーコードスキャナーの設定

Zebraバーコードスキャナー(USB)を再初期化するためには、このページを印刷して良質なハードコピーを作成し、以下の各々のバーコードを順番にスキャンしてください。

図 13-6: Zebraスキャナー設定用バーコード・スキャンシーケンス

スキャン1: デフォルトを設定

スキャン2: code 128を有効にする

スキャン3: スキャンオプション

スキャン4: <DATA> <SUFFIX>

スキャン5: 入力

スキャン6: Caps Lock キーをオーバーライドする(有効にする)

13.1.3.2 ブザー音量の設定

Zebraバーコードスキャナー用のブザー音量を設定するには、このページを印刷して良質なハードコピーを作成し、以下の希望のレベルに相当するバーコードをスキャンしてください。

図 13-7: Zebra スキャナーのブザー音量 バーコード

低音量

中音量

高音量

13.1.3.3 ハンズフリー方式での使用の設定

スキャナーをスタンドに置いてハンズフリー方式で標準的に使用する場合、バーコードを読み込ませるときにトリガーを押す必要はありません。

Zebraバーコードスキャナーのハンズフリー方式での使用をONまたはOFFに設定するには、このページを印刷して良質なハードコピーを作成し、以下の希望の機能に相当するバーコードをスキャンしてください。

図 13-8: Zebra スキャナーのハンズフリー方式での使用

ハンズフリー方式での使用をON

ハンズフリー方式での使用をOFF

13.2 スライドラベラー

スライドラベラーには、マニュアルが付属しています。クリーニング、ラベルのロードおよび印刷 リボンについては、マニュアルを参照してください。毎月 クリーニングしてください。

BOND試薬の使用

本章では BOND システムの組織染色における科学的および臨床的考察を行います。

使用説明書の全文は、各Leica Biosystems製品に同梱されています。標本調製、品質管理、およびアッセイの解釈に関する試薬特有の情報については、最初にこれらの説明書を参照してください。BONDシステムでのこれらのプロセスの一般的なガイダンスを以下に説明します。

- 14.1 手順の原理
- 14.2 標本調製
- 14.3 品質管理
- 14.4 染色の解釈
- 14.5 一般的な制限事項
- 14.6 参考文献

14.1 手順の原理

本節ではIHCおよびISHの概要を説明します。また、BOND検出システムについても説明します。

免疫組織化学(IHC)

免疫組織化学技術は、細胞や組織の特異抗原を検出する方法として50年以上に渡って使用されてきました。1941年¹ に、蛍光標識を用いた方法が最初に報告されています。続いてパーオキシダーゼなどの酵素マーカーが導入されました²。今日、免疫組織化学技術は、標準H&Eパラフィン染色と共に細胞認識に使用され、正常細胞と異常細胞の判定の補助として利用されています。免疫組織化学法は、古典的な方法だけでは確定的な診断が不可能な場合にも使用可能な、外科病理学における「標準的なテスト」となっています^{3、4}。ただしこの方法は世界的に広く使用されているのにもかかわらず、再現性 5 について若干の問題がみられます。

自動 BOND システムの試薬は、免疫化学技術によって組織片の抗原を検出します。すなわち、特定の一次抗体が切片に結合すると、BOND検出システム試薬を使用し、可視化します。

テスト用「マーカー」は、組織検体における特定の抗原やDNA/RNA結合部位の検出に使用される試薬です。マーカーは、IHCでは一次抗体、ISHではプローブとなります(下記参照)。

In situハイブリダイゼーション(ISH)

分子生物学的技術は大きな進化を遂げ、疾患の理解に貢献しています。in situハイブリダイゼーションは、分子生物学と組織学を組み合わせて、細胞レベルにおけるDNAやRNAの可視化を可能にします。1969年6に核酸の検出が最初に導入されて以来、in situハイブリダイゼーションプロトコールは臨床病理分野および臨床研究においてますます重要なツールとなってきています。

in situ ハイブリダイゼーションは、DNAやRNAのヌクレオチド塩基に相補的に結合する原理を応用しています。標識化した核酸プローブは、固定された組織や細胞標本において特異的かつ相補的な配列で結合します。プローブは、ラベルに抗体を塗布した後に、BONDポリマー検出システムを利用して可視化されます。BONDの自動化システムおよび試薬は、扱い難い手作業に代わって、信頼性の高い効果的な方法を提供します。

14.1.1 BOND 検出 システム

Leica Biosystems では、特にthe BOND システムのために開発 された様々な検出システムを提供しています。その中でも、BOND Polymer Refine Detection[™] システムは、高感度で鮮明な染色で、さらにストレプトアビジン・ビオチンをの使用を必要としません。

入手可能なBOND検出システムについては、次のセクションを参照してください。

- 14.1.1.1 BOND Polymer Refine Detection
- 14.1.1.2 BOND Polymer Refine Red Detection

14.1.1.1 BOND Polymer Refine Detection

BOND-PRIME 処理 モジュールは、この検出 システムと異 なるバージョンを使用します。この処理 モジュールは、デュアル試薬 システムトレイで提供され、ヘマトキシリン試薬 コンテナは別のアクセサリーです。詳細については、別書の BOND-PRIME ユーザーマニュアルを参照してください。

BOND Polymer DAB ベースシステムであるBOND Polymer Refine Detection は、標的抗原に結合した抗体や核酸に結合したプローブに対する、高感度で鮮明な染色性を有しています。本システムはストレプトアビジンやビオチンを使用しないため、内因性ビオチンによる非特異的な染色を排除することができます。内因性ビオチンは、消化管癌、腎臓癌、肝臓癌、乳癌などの組織に広く見られます。BONDポリマー検出システムはストレプトアビジン・ビオチン系検出システムよりも高感度なので、低濃度の抗体が使用でき、処理時間も短縮されます。

BOND システムは、各ステップで、切片を正確な時間で反応し、洗浄し、不要な試薬等を除去します。反応、洗浄、結果の解釈を含むプロトコールステップは、BOND Polymer Refine Detection の使用説明書の説明に従って行われます。また結果の解釈は、光学顕微鏡によって行われ、病理学過程における補助診断に使用します(特定の抗原との関連性の有無にかかわらず)。

さらに高感度が必要な場合には、BOND Polymer Detectionシステムで以下のオプションを使用することができます:

- 一次抗体もしくはプローブ、および/または検出システム部品に対する反応時間を延長
- BOND DABエンハンサーステップを使用します。
- IHCのみを使用するときは、一次抗体の濃度を濃くしてください。

この3つのオプションは、Bond Oracle™ HER2 IHC Systemでは使用できません。

BONDOracle HER2 IHC Systemは、標的蛋白質の存在を特定し、標的治療の適格性を判断するためのコンプリートシステムです。このアッセイは、より良い診断結果を安定的に得るために最適化された総合システムであり、希釈済抗体、検出試薬、コントロール試薬、およびコントロールスライドが付属しています。アッセイは、IHCメソッドに基づいています。使用説明書の全文は、システムに同梱されています。処理を設定する際には使用説明書を参照してください。HER2 IHCテストの性質上、有効なアッセイを行うために、これらの使用説明書の指示に必ず従ってください。

14.1.1.2 BOND Polymer Refine Red Detection

BOND-PRIME 処理 モジュールは、この検出 システムと異 なるバージョンを使用 します。この処理 モジュールは、デュアル試薬 システムトレイで提供 されます。詳細 については、別書の BOND-PRIME ユーザーマニュアルを参照してください。

BOND Polymer Refine Red Detection™ には、上述の DAB ベースのポリマー検出 システムと同じ利点 がありますが、DAB ではなくFast Red 発色を使用して可視化します。本システムは、組織の色素 をDAB と誤認しやすい皮膚 などの組織に適しています。

このBOND Polymer Refine Red Detectionシステムは、鮮赤色の免疫染色を呈するアルカリホスファターゼ、および、ヘマトキシリン対比染色(青色)と共役の高感度なCompact Polymer™システムです。

ファーストレッド色素は、標準施設条件では化学的に不安定です。色素の効果を維持するためには、BOND Polymer Red 検出システムのユーザーマニュアルに厳格に従ってください。またシステムの劣化を迅速に判定するためにも、必ず患者組織と同じスライドにコントロール組織を載せてください。

BOND Polymer Refine Red Detection system にはLeica CV Ultra Mounting Media を推奨します。他の封入剤では染色終了直後の染色強度が維持できないことがあります。

BOND Polymer Red Detectionシステムのステップは以下の通りです。

- 1 一次抗体の反応
- 2 ポストプライマリーの反応
- 3 アルカリフォスファターゼ (AP)標識ポリマー複合体 (三次抗体結合)を含むポリマー試薬の反応。
- 4 ファーストレッド発色試薬での赤系の発色による可視化
- 5 ヘマトキシリン対比染色による核染色

BOND Polymer Detection(DAB)と同様に、反応、洗浄、結果の解釈を行います。

14.2 標本調製

このセクションでは染色用組織の調製について説明します。

- 14.2.1 必要な材料
- 14.2.2 組織調製
- 14.2.3 脱 パラフィンとベーキング
- 14.2.4 抗原賦活化

14.2.1 必要な材料

BOND システムによる免疫組織化学的方法およびin situハイブリダイゼーション染色に必要な材料は、以下のとおりです。

14.2.1.1 共通な材料

- 固定液 10%中性緩衝ホルマリン液を推奨
- パラフィンワックス
- ティッシュプロセッサーおよび包埋センター
- 陽性 および陰性組織 コントロール(14.3 品質管理を参照)
- ミクロトーム
- 乾燥用オーブン
- 封入剤(樹脂ベースまたは水性ベース)
- 電荷 スライド(例 えばLeica BOND Plus スライド)
- BOND Slide Labels and Printer Ribbon
- カバースリップ
- BONDUniversal Covertile またはBOND-PRIMEARC Covertiles
- BOND-PRIME Suction Cups (BOND-PRIME 吸着カップ)
- BOND-PRIME Mixing Well Plate (BOND-PRIME ミキシングウェルプレート)
- 適切なBONDまたはBOND-PRIME試薬システム
- BOND Enzyme Pretreatment Kit
- BOND Dewax Solution またはBOND-PRIME Dewax Solution
- 洗浄液(BONDWash Solution 10X Concentrate から調製したもの) またはBOND-PRIMEWash Solution Concentrate
- 脱イオン水
- アルコール(試薬級)

*試薬級アルコールは、90% (重量比) 以上のエタノール、5% (重量比) 以下のイソプロパノール、5% (重量比) 以下のメタノールの混合液です。

BOND-PRIME処理 モジュールについては、別書のBOND-PRIMEユーザーマニュアルを参照してください。

14.2.1.2 IHCの材料

IHC検査には、上記の材料に加えて以下の材料が必要となります。

- 一次抗体用陰性 コントロール試薬(14.3 品質管理を参照)
- BOND または BOND-PRIME Epitope Retrieval Solution 1
- BOND または BOND-PRIME Epitope Retrieval Solution 2
- BOND の希釈済一次抗体、もしくは7mLまたは30 mLのBOND オープンコンテナを用いてBOND 一次抗体希釈液で希釈した一次抗体
- 封入剤(樹脂ベースまたは水性ベース)
- タイトレーションキット、オプション(14.2.1.4 タイトレーションキットを参照)

14.2.1.3 ISHの材料

上記の共通の材料に加えて、ISH検査には以下の共通材料が必要となります。

- ISHプローブ
- 抗フルオレセイン抗体
- ISH用陽性 および陰性 コントロールプローブ(14.3 品質管理を参照)

14.2.1.4 タイトレーションキット

BOND タイトレーションキットには、空のコンテナ10個およびインサート(6 mL)50個が入っており、BOND システムの一次抗体の濃度を最適化する際に使用します。一次抗体濃縮液を少量のみ調製し、インサートに配置することが可能です。各容器には、合計40 mL の試薬を再充填することができます。

濃縮抗体の滴定は、連続2倍希釈によって可能です。以下に、150 µLの単一分注で連続希釈を実施する方法を説明します。

- 1 各抗体について、適切な希釈液の入ったインサート3個をラベル付けします。
- 2 最初のインサート700 µL を、開始希釈液 とします。
- 3 BOND 一次抗体希釈液 350 µLを、インサート2 と3へ分注します。
- 4 開始希釈液からインサート2へ350 µL移動し、軽〈混合します。
- 5 インサート2からインサート3へ350 μL移動し、軽ぐ混合します。

14.2.2 組織調製

BOND システムによる免疫組織化学的方法および in situ ハイブリダイゼーション染色では、組織体積の15~20倍の10%中性緩衝ホルマリンを用いて、組織を固定化するよう推奨します。なお固定は室温 (15~25°C)で実施可能です。

HER2検査については、米国臨床腫瘍学会 / 米国病理医協会による組織調製に関する勧告¹⁰を参照するか、各国のガイドラインおよび規制を確認してください。

組織の切断を容易にし、 $ミクロトームのブレードの損傷を防ぐために、組織処理の前に骨組織を脱灰してください <math>11 \cdot 12$ 。

米国臨床施設改善法(CLIA: 1988年)では42CFR 493.1259(b)において、「染色済みのスライドは検査日から10年以上、また標本ブロックは2年以上保管する」ことを義務づけています。 13 各施設の該当要件については、各国の条例を参照してください。

3~5 μ m 厚の切片を作製し、帯電したガラススライドに張り付けます(組織の種類によっては切片の厚さを変える必要がある場合があります)。組織を乾燥させるには、よく水抜きをしたスライドを60°C(\pm 5°C)のオーブンに10~30分間入れるか、または37°Cで1晩放置してください。BOND-III およびBOND-MAX処理モジュールではスライドをベーキングすることも可能です。スライドはでベーキングする前に、十分に乾燥させてください。なお標本作製の詳細については、参考文献13、14および15を参照してください。

4 クイックスタートで説明されているように、標本とコントロールスライドにスライドラベルを貼付します。BONDシステム上では、脱パラフィン、親水化、抗原賦活化は完全に自動化されています。

14.2.3 脱パラフィンとベーキング

免疫組織化学用のパラフィン包埋組織切片は、最初にパラフィンワックスを除去し、さらに切片を親水化する必要があります。BOND または BOND-PRIME Dewax Solution を使用してパラフィンワックスを除去し、切片を親水化します。BOND システムには、この手順を自動化した脱パラフィンプロトコールが含まれています。

脱 パラフィンの前に、BOND-III および BOND-MAX 処理 モジュールで組織 をベーキングすることにより、組織 をスライドにしっかりと付着 させることができます。BOND システムの「ベーキング & 脱 パラフィン」プロトコールは、ベーキングと脱 パラフィンのプロセスを自動化しています。

組織は、十分に空気乾燥させて水分を除去してから、処理モジュールにロードして、ベーキングと脱パラフィンの手順を実施してください。

14.2.4 抗原賦活化

組織のホルマリン固定化によって、組織内のアルデヒドとアミノ基に架橋が形成されその結果として、マスキングによる抗原性の可変的喪失が起こる場合があります。また、ホルマリンはメチレン結合を形成するので、これによって、エピトープの全体的な三次元形状が変化する可能性があります。さらにホルマリン感受性のある一部のエピトープは、ホルマリン固定化後に免疫活性の低下を示しますが、その他はホルマリン耐性を有しています。

核酸はタンパク質に囲まれているため、標的配列にプローブを近接させるには、組織の透過処理が必要です。

抗原賦活化 $^{7.8}$ 、は、加熱による賦活化(加熱処理)、酵素処理、またはこれらを組み合わせて行うことができます。HIERは、IHCの抗原賦活化に最も幅広 〈利用されます。HIERのメカニズムは、完全には判明していませんが。

仮説として、抗原賦活化溶液中で切片を高温まで加熱すると、ホルマリン固定化によって形成された架橋が加水分解されます。その結果として、エピトープの再構築が起こり、免疫組織化学的方法によって染色されます。HIERにおける重要な要素は、温度、時間および溶液のpHです。なおBONDシステムでは、クエン酸塩ベースのバッファーおよびEDTAベースのバッファーの2種類の抗原賦活化溶液が使用可能です。

酵素処理では、タンパク質分解酵素を使用してペプチド結合を分解し、エピトープ/標的核酸配列を露呈させます。酵素度および反応時間は標本の固定時間に比例し、適宜最適化してください。酵素前処理は、一部のエピトープのみに使用可能ですが、ISHプロトコールでは多用されます。

14.3 品質管理

組織処理や技術手順は施設ごとに異なるため、その結果大きなばらつきが生じる可能性があります。したがって以下の手順に加えて、定期的に施設内検証や管理を実施する必要があります。各国の指針や規制を確認してください。また、「CLIA Compliance Handbook: The Essential Guide for the Clinical Laboratory Second Edition」²² および IHC のための NCCLS 指針提案¹⁴ が役立つでしょう。

コントロールは、患者検体と同じ方法で、できる限り迅速に固定化・処理・包埋した新鮮な 剖検標本 / 生検標本 / 外科標本でなければなりません。こうしたコントロールにより、組織 作製から染色までの全染色ステップがチェックされます。

必ず患者組織と同じスライドにコントロール組織を塗布するよう強く推奨します。 ては 6.2 コントロールの作業を参照してください。

以下を参照:

- 14.3.1 アッセイ検証
- 14.3.2 組織 コントロール
- 14.3.3 IHCの陰性試薬 コントロール
- 14.3.4 ISH用の試薬 コントロール
- 14.3.5 品質管理の恩恵

14.3.1 アッセイ検証

診断手順で抗体やプローブや染色システムを初めて使用する前に、施設で準備した複数の組織(既に、陽性、陰性がわかっているコントロール組織)を用いて抗体やプローブの特異性を検証してください。また上で概説した手順、ならびに、CAP認定プログラム14の免疫組織化学的方法やNCCLSIHCガイドライン¹⁴または各国の規制やガイドラインの品質管理勧告を参照してください。抗体ロットが新しくなった場合や、アッセイパラメータに何らかの変更があった場合は、その都度この品質管理手順を実施してください。検出システムをテスト目的に使用する前に必ずマッチングされた試薬と既定のアッセイプロトコールを一緒に試験しなければならないため、各試薬の品質管理を別々に実施することは無意味です。なおアッセイ検証に適した組織については、一次抗体の添付文書を参照してください。

上述のアッセイ検証手順に加えて、月1回、陽性組織コントロールを染色し、それを前月染色した同じ組織コントロールと比較するよう推奨されます。月1回の頻度で染色を行った組織コントロールを比較することで、アッセイの安定度、感度、特異性および再現性が監視できます。

あらゆる品質管理条件は、地方自治体や都道府県や国の規制および認定要件を遵守した上で実施する必要があります。

14.3.2 組織 コントロール

14.3.2.1 陽性組織 コントロール

- 正しく調製された組織と適切な染色技法が正しかったことの検証
- それぞれの染色処理について、1ランごとに、陽性コントロールが必要です
- 品質管理を最適化し、試薬に関する微弱な劣化を検出するためには、陽性染色が濃い組織より も、陽性染色が薄い組織の方が適しています¹⁴。
- 強陽性、中程度の陽性、弱陽性の組織を含むコントロールスライドを用いると、コントロール範囲が 広くなります。
- 陽性組織コントロールが陽性染色を呈さない場合には、テスト標本の結果は無効となります。\
- 最適な品質管理を行うために、必ずコントロール組織を検体組織と同じスライドに塗沫して、BONDシステムを操作するようにしてください。

14.3.2.2 陰性組織 コントロール

- 陽性組織コントロールの後に検討を行い、IHCでの一次抗体による標的抗原の標識化、または ISH でのプローブによる標的核酸の標識化の特異性を検証し、特定のバックグラウンド染色(擬陽性染色)を明確にします。
- 大部分の組織切片に存在する細胞は、多くの場合に陰性コントロール部位となりえますが、これを 実際に検証する必要があります。
- 陰性組織 コントロールに特異な染色が認められた場合には、患者標本の結果は無効であると見なされます。

14.3.3 IHCの陰性試薬 コントロール

IHCでは、各患者の標本切片に対して、一次抗体の代わりに陰性試薬コントロールを使用することにより、非特異な染色について評価し、特異な染色を正しく確認することができます。

- 推奨される理想的なコントロール試薬:
 - a モノクローナル抗体では、一次抗体と同様に、培養上清から生成した同じアイソタイプの抗体を使用します。ただしヒト組織に対して特異な反応は示しません。
 - 同じ希釈液(BOND Primary Antibody Diluent)を使用して、一次抗体と同じ免疫グロブリン濃度またはタンパク濃度に希釈します)。
 - もし、牛胎児血清が含まれている場合は、希釈した一次抗体にも同濃度の牛胎児血清が含まれるように調整してください。
 - b ポリクローナル抗体では、同一希釈液(BOND Primary Antibody Diluent)を用いて、一次抗体と同じ動物の正常血清または非免疫血清の免疫グロブリン分画(または必要に応じて全血清)を使用します。
- BOND Primary Antibody Diluentは単独でも使用可能ですが、前述の陰性試薬 コントロールに対してや や劣ります。
- 陰性試薬コントロールの反応時間は、一次抗体の場合と一致する必要があります。
- 各一次抗体について、賦活(賦活化しない場合を含む)法ごとに、別々の陰性試薬コントロールスライドを使用してください。
- 連続切片に複数の抗体のパネルを使用する場合は、1枚のスライドの陰性染色部位を、他の抗体の陰性/非特異結合バックグラウンドコントロールとしてを使用できる場合があります。
- 特異な免疫活性と、内因性酵素活性または酵素の非特異的結合とを識別するには、追加のテスト組織を準備して、それぞれ、発色基質のみ、または酵素複合体と発色基質で染色してください。
- BOND システムには、「*Negative」という名称で、陰性IHC コントロール試薬をデフォルトから選択することができます。これは、あらゆるIHC プロトコールのマーカーとして選択できます。これは BOND 洗浄液が分注されます(10.5.2 ケースとスライドの設定を参照)。

14.3.4 ISH用の試薬 コントロール

14.3.4.1 陽性試薬 コントロール

In situハイブリダイゼーションでは、陽性コントロールプローブを使用してください。

- ププローブの代わりとして使用することによって、患者標本での核酸の保持状態や、プローブの組織への反応性の情報が得られます。
- 陽性プローブコントロールのプロトコールは、検査プローブのプロトコールと一致する必要があります。
- 陽性組織 コントロールプローブが陽性染色 を呈さない場合には、テスト標本の結果は無効 と見なされます。

14.3.4.2 陰性試薬 コントロール

In situハイブリダイゼーションでは、陰性コントロールプローブを使用してください。

- 陰性 コントロールプローブのプロトコールは、検査プローブのプロトコールと一致 する必要 があります。
- プローブの代わりに各患者標本の切片を使用することにより、非特異な染色について評価し、特異な染色を正しく解釈することができます。
- 陰性試薬コントロールの反応時間は、プローブの場合と一致する必要があります。
- 各プローブについて、賦活(賦活化しない場合を含む)法ごとに、別々の陰性試薬コントロールスライドを使用してください。
- 特異な免疫活性と、内因性酵素活性または酵素の非特異的結合とを識別するには、追加のテスト組織を準備して、それぞれ、発色基質のみ、または酵素複合体と発色基質で染色してください。

14.3.5 品質管理の恩恵

品質管理によって下表のような恩恵を受けることができます。

陽性組織コントロール:	染色の全ステップをコン	非特異なバックグラウンド染
検出対象の(換言すれば、患者組織に存在する可能性のある)標的抗原 /核酸配列を含む組織 または細胞。	トロールします。 染色に使用する試薬と 手順を検証します。	色の検出
理想的なコントロールとは、抗体/核酸の劣化が確認できる弱陽性の組織。		

陰性組織コントロール: 陰性と予測される(患者 組織または陽性コントロール組織内に存在する 可能性がある)組織また は細胞	細胞/細胞組成に対する偶発的な抗体交差反応の検出 [IHC] その他の核酸配列または細胞/細胞組成に対する偶発的なプローブ交差ハイブリダイゼーションの検出 [SH]		非特異なバックグラウンド染色の検出
患者組織	特異な染色の検出	核酸の保持/組織 固定、および/また は賦活化の評価 [SH]	非特異なバックグラウンド染色の検出

14.4 染色の解釈

結果を解釈する前に、免疫組織化学法やin situハイブリダイゼーション手順に熟知した有資格病理専門医師によって、コントロールが評価され、染色結果の適格性が判断される必要があります。

抗原検出の特異性や感度は、どんな特異な一次抗体を使用するかによって異なります。希望の染色を達成するには、反応時間や特異抗体の濃度を変化させて、BONDシステムにおける各特異抗体を最適化してください。特異抗体が最適化されないと、抗原検出の性能が不十分となる可能性があります。

以下を参照:

- 14.4.1 陽性組織 コントロール
- 14.4.2 陰性組織 コントロール
- 14.4.3 患者組織

14.4.1 陽性組織 コントロール

全試薬が正しく機能することを確認するには、まず初めに陽性組織コントロールを試験してください。

DAB ベースのシステムでは、標的細胞が褐色の反応生成物(3,3'ジアミノベンジジンテトラクロライド、DAB) を呈した場合、陽性反応を示したことを意味します。RED 発色ベースのシステムを使用する場合は、標的細胞が赤い反応生成物を呈した場合、陽性反応を示したことを意味します。陽性組織コントロールが陽性染色を呈さない場合には、テスト標本の結果は無効となります。

14.4.2 陰性組織 コントロール

陽性組織 コントロールの後に陰性組織 コントロールの検討を行い、一次抗体やプローブによる標的抗原/核酸の結果の特異性を検証します。

陰性組織 コントロールで特異な染色を呈さない場合には、細胞/細胞組成に対する抗体 / プローブの抗体 交差反応性がないと結論できます。

陰性組織コントロールで特異な染色(擬陽性染色)を呈した場合には、テスト標本の結果は無効とみなされるべきである。非特異染色は、通常はディフューズな染色を呈します。また、ホルマリンで過剰に固定された組織では結合組織がまばらに染色される場合があります。なお染色結果を解釈する際は、損傷のない細胞を使用してください。壊死細胞や変性した細胞は、非特異染色を呈することがあります。

14.4.3 患者組織

最後に、一次抗体 / プローブで染色した患者標本の検討を行います。

陽性染色強度は、陰性試薬コントロールの非特異バックグラウンド染色を参考にし評価ください。免疫組織化学的方法やin situハイブリダイゼーションにおいて、結果が陰性であったとしても、単に抗原や核酸が検出されなかったことを意味するものであり、アッセイの対象となった細胞や組織中に抗原や核酸が存在しないことを意味するものではありません。

必要に応じて、抗体パネルを用いて擬陰性反応でないかを確認してください。

14.5 一般的な制限事項

- 免疫組織化学的方法およびIn situハイブリダイゼーションは複数のステップを経た診断プロセスであり、適切な試薬の選択、組織の選択、固定化と処理、スライドの調製、染色結果の解釈に、特別な訓練を必要とします。
- 組織の染色は、染色前の組織の取扱や処理によって左右されます。不適切な固定化、凍結、解凍、洗浄、乾燥、加熱、セクショニング、またはその他の組織や体液等による汚染によって、アーチファクトや抗体のトラッピングが発生したり、もしくは誤って結果が陰性となることがあります。結果に一貫性がない場合は、その原因として、固定や包埋方法のばらつき、または組織自体の不規則性の可能性があります¹⁸。
- 対比染色が過剰であったり不十分な場合、結果を正しく解釈できなくなる可能性があります。
- 染色の有無を臨床学的に解釈する場合、適切なコントロールを使用した形態学的研究を利用して補完する必要があります。また、患者の既往歴やその他の診断検査に基づく病理専門医師による評価が必要です。
- B型肝炎に感染した患者やB型肝炎表面抗原(HbsAg)を有する患者の組織は、西洋ワサビパーオキシダーゼによって非特異な染色を発現する可能性があります 19 。

- 低分化型の腫瘍で予想に反して反応が陰性となった場合、抗原の発現が失われたりそれが著しく低下している、または、抗原の遺伝の喪失や、ミューテーションが原因である可能性があります。また腫瘍の染色が予想に反して陽性となった場合は、形態学的に類似の正常な細胞で通常発現しない抗原の発現から、または、他の細胞系(互いに異なる分化)と関連した形態的および免疫組織学的な特徴をもつ新生物の抗原の残存または獲得からである可能性があります。腫瘍の分類学は、精密化学ではないため、予期せぬ反応に関しては複数の文献で議論されています。
- 試薬は、未試験の組織において、予期せぬ反応を示す可能性があります。検査された組織グループでさえ予想外の反応の可能性は、腫瘍または他の病理学的組織で抗原発現/目標核酸の生物学的変動性のため、完全になくすことは不可能です。なお予期せぬ反応が認められたときは、Leica Biosystemsの地域支社にご連絡ください。

IHC

- ブロッキングに二次抗体と同種の正常血清を使用した場合、自然抗体によってフォールスポジティブ、フォールスネガティブとなる場合があります。
- IHC の擬陽性は、タンパク質または基質反応生成物の非特異反応が原因である可能性があります。その他の原因として、使用される免疫染色の種類によっては、擬ペルオキシダーゼ活性(赤血球)、内因性ペルオキシダーゼ活性(チトクロームC)または内因性ビオチン(肝臓、乳房、脳、腎臓など)が挙げられます¹⁶。
- IHC の結果が擬陰性であった場合、腫瘍の脱分化による、抗原の減少、喪失、構造変化、または固定や処理の段階でのアーチファクト的な変化等、多種の原因が考えられます。どのような免疫染色検査においても、結果が陰性だった場合、単に抗原が検出されなかったことを意味するものであり、アッセイの対象となった組織中に抗原が存在しないことを意味するのではありません。

ISH

- ISH の結果が偽陽性の場合、プローブと他の核酸配列との交差反応、および、プローブや検出試薬と組織 / 組織組成との非特異的な結合などの原因が考えられます 18 。検査の際に陰性組織とコントロール試薬をを含めると、擬陽性染色を判別する上で役に立つことがあります。
- DNAおよびRNAは、ヌクレアーゼ活性によって分解される可能性があります^{8,19}。したがって核酸分解を確認するには、特異的プローブや患者組織と平行して、患者組織で陽性コントロールプローブを試験する必要があります。また固定方法の選び方によっては核酸の保存に影響が出るため10%中性緩衝ホルマリンで固定することが推奨されます¹⁹。どんなin situハイブリダイゼーション検査においても、結果が陰性だった場合、単に核酸が検出されなかったことを意味するものであり、アッセイの対象となった組織中に核酸が存在しないことを意味するのではありません。

14.6 参考文献

- 1 Coons AH et al.Immunological properties of an antibody containing a fluorescent group. Proc SocExp Biol Med 1941; 47:200-202.
- 2 Nakane PK and Pierce GB Jr.Enzyme labeled antibodies: Preparations and applications for the localizations of antigens. J Histochem Cytochem 1967; 14:929-931.
- 3 Elias JM, Gown AM, Nakamura RM, Wilbur DC, Herman GE, Jaffe ES, Battifora H, and Brigati J. Special report: Quality control in immunohistochemistry. Am J Clin Path 1989; 92:836.
- 4 Nadji M and Morales AR.Immunoperoxidase techniques: a practical approach to tumor diagnosis. ASCP Press, Chicago. 1986.
- 5 True LD ed. Atlas of Diagnostic Immunohistopathology. Lippincott, Philadelphia. 1990.
- 6 Gall JG, Pardue ML.Formation of RNA-DNA hybrid molecules in cytological preparation. Proceedings of the National Academy of the Sciences of the United States of America. 1969;63:378-383.
- 7 Shi S-R, Gu J, and Taylor CR.Antigen Retrieval Techniques: Immunohistochemistry and Molecular Morphology. Eaton Publishing, Natick. 2000.
- 8 Miller RT, Swanson PE, and Wick MR. Fixation and epitope retrieval in diagnostic immunohistochemistry: a concise review with practical considerations. Appl Immunohistochem Mol Morphol. 2000 Sep;8(3):228-35.
- 9 Bancroft JD and Stevens A. Theory and Practice of Histological Techniques.4th Edition.Churchill Livingstone, New York.1996.
- 10 Wolff et al. American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer. Arch Pathol Lab Med 2007; 131:18-43
- 11 Kiernan JA. Histological and Histochemical Methods: Theory and Practice. New York: Pergamon Press. 1981.
- 12 Sheehan DC.and Hrapchak BB.Theory and Practice of Histotechnology.St. Louis: C.V. Mosby Co. 1980.
- 13 Clinical Laboratory Improvement Amendments of 1988, Final Rule 57 FR 7163 February 28, 1992.
- 14 O'Leary TJ, Edmonds P, Floyd AD, Mesa-Tejada R, Robinowitz M, Takes PA, Taylor CR.Quality assurance for immunocytochemistry; Proposed guideline.MM4-P. National Committee for Clinical Laboratory Standards (NCCLS). Wayne, PA.1997;1-46.
- 15 Battifora H. Diagnostic uses of antibodies to keratins: a review and immunohistochemical comparison of seven monoclonal and three polyclonal antibodies. Progress in Surg Path 6:1-15.eds. Fenoglio-Preiser C, Wolff CM, Rilke F. Field & Wood, Inc., Philadelphia.
- 16 College of American Pathologists (CAP) Certification Program for Immunohistochemistry. Northfield IL. http://www.cap.org
- 17 Wilkinson DG. The theory and practice of in situ hybridisation. In: Wilkinson DG. (ed.) In Situ Hybridization A practical approach. 2nd Edition. New York: Oxford University Press, 1998, pp. 18-20.
- 18 Nadji M, Morales AR.Immunoperoxidase, part I: the techniques and pitfalls.Lab Med 1983; 14:767.
- 19 Omata M, Liew CT, Ashcavai M, and Peters RL.Nonimmunologic binding of horseradish peroxidase to hepatitis B surface antigen: a possible source of error in immunohistochemistry. Am J Clin Path 1980;73:626
- 20 Wilkinson DG.In situ hybridization: A practical approach.2nd Edition.Oxford University Press, Oxford.1998.
- 21 Weiss LM, Chen Y. Effects of different fixatives on detection of nucleic acids from paraffin-embedded tissues by in situ hybridization using oligonucleotide probes. The Journal of Histochemistry and Cytochemistry. 1991;39(9):1237-1242.
- 22 Pontius CA, Murphy KA, Novis DA and Hansen AJ.CLIA Compliance Handbook: The Essential Guide for the Clinical Laboratory.2nd Edition.Washington G-2 Reports, New York.2003.

15 システム管理(BOND コントローラー上)

15.1 BOND システムマネージャー

15.1.1 概要

BOND システムマネージャーから、BOND システムで使用 される主要 なソフトウェアサービスの現状 を簡単に表示 させたり、印刷 スプーラーなどのサービスを個別に停止 および開始したり、あらゆるサービスを停止 および開始 することができます。

警告:どのサービスも停止しないでください。BONDシステムが正しく作動しなくなります。

ただし、カスタマーサポートから、システムのトラブルシューティングプロセスの一環として、1件またはそれ以上のサービスを一旦停止してから再起動するように依頼される場合があります。

BOND システムマネージャーを開くには、まず、Windowsの通知領域でBOND システム管理アイコン 🗳 を見つけ、そのアイコンをクリックします。

アイコンが非表示になっている場合がありますので、小さな上向きの矢印をクリックして表示してください。

BOND システムにエラーが発生した場合、通知 メッセージが表示 されます。メッセージをクリックすると非表示になります。

BOND システムマネージャーのウィンドウを非表示にするには、もう一度、Windows の通知領域にあるアイコンをクリックします。

15.1.2 BOND システムマネージャーのウィンドウ

図 15-1: BOND システムマネージャーのウィンドウ

Leica BOND Instrument Control	インストール完了	✓ ■
Leica BOND Batch Management	インストール完了	✓ ■
Leica DHCP Server	インストール完了	✓ ■
Leica BOND Print Management	インストール完了	✓ ■
Leica BOND Heartbeat Service	インストール完了	✓
Print Spooler	インストール完了	✓
PostgreSQL - PostgreSQL Server 13	インストール完了	✓ ■
PostgreSQL Agent - BOND	インストール完了	✓
World Wide Web Publishing Service	インストール完了	✓ ■

BOND システムエラーが発生した場合、BOND システムマネージャーのアイコン 💪 がアップデートされ、以下のような発生したエラーのタイプが表示されます。


- ♣ BOND に接続できない(CO このとき、BOND システムマネージャー画面の左上にが表示されます) BOND-ADVANCE のインストールでは、ほとんどの場合、下記いずれかを意味しています。
 - コントローラーがオフになっている
 - ターミナルのネットワークが切断されている
 - ターミナルのネットワークスイッチがオフになっている
- 💪 BOND システムマネージャーが利用できない(😮 このとき、BOND システムマネージャー画面の左上にが表示されます)

15.1.3 サービスの停止

各 サービスを個別に停止するには、サービス名の右端にある赤い停止ボタンをクリックします。さらに、全部のサービスを停止するには、サービスのリストの下にある**全で停止**ボタンにをクリックします。

ポップアップダイアログが表示され、サービスの停止を確認するよう求められます。 続行するときは**はい**、取り消すときは**いいえ**をクリックします。

図 15-2:「確認が必要」ダイアログ

一部のサービスは、停止することはできません\(PostgresSQL-PostgresSQLのサーバーおよびWorld Wide Web Publishing サービス)。これは、BONDシステムマネージャーの機能をこれらのサービスに依存しているため、その停止ボタンが無効になっているからです。

15.1.4 サービスの開始

ほとんどの場合、サービスを停止しても、BOND ソフトウェアによって、停止したサービスは数分以内に自動的に再起動されます。

BOND システムが予想どおりに作動せず、1件またはそれ以上のサービスが停止していることを発見した場合、BOND システムマネージャーを使用すると、停止したサービスを再開することができます。

各サービスを個別に起動するには、サービス名の右端にある緑色の起動ボタンをクリックします。さらに、全部のサービスを起動するには、サービスリストの下にある全で起動ボタンにをクリックします。

図 15-3: 警告三角形を示す BOND システムマネージャ(印刷 スプーラサービスが停止)

Leica BOND Instrument Control	インストール完了	✓
Leica BOND Batch Management	インストール完了	✓
Leica DHCP Server	インストール完了	✓
Leica BOND Print Management	インストール完了	✓
Leica BOND Heartbeat Service	インストール完了	✓
Print Spooler	インストール完了	X
PostgreSQL - PostgreSQL Server 13	インストール完了	✓
PostgreSQL Agent - BOND	インストール完了	✓
World Wide Web Publishing Service	インストール完了	✓

15.2 ハードディスクの冗長性

ハードディスクに故障が生じた場合にBONDシステムを保護するため、どのBONDコントローラーやターミナルにもハードディスクの冗長機能が装備されています。この保護システムによってシステムのハードディスクが連続的に監視され、Windowsの通知領域に、現状を示すアイコンが表示されます。

アイコン	表示内容
	標準 - ハードディスクは正常に作動。
	警告 - システムのハードディスクに問題が発生。カスタマーサポートにご連絡ください。
	エラー - ハードディスクに故障発生。カスタマーサポートにご連絡ください。
	ビジー- ハードディスクが検証中のとき、たとえば不意にシャットダウンした後などに、このアイコンが表示されることがあります。検証は通常2-3時間で完了しますが、検証中はコントローラーまたはターミナルの処理が遅くなることがあります。この期間中、BONDシステムが使用不能になる場合あります。
	検証後は、アイコンが標準状態に戻り、通常のハードディスク操作が再開されるはずです。アイコンが警告またはエラーを示す場合は、カスタマーサポートにご連絡ください。
	サービスが稼働していない-ハードディスクの保護状態を監視するソフトウェアサービスが実行されていません。コントローラーまたはターミナルが起動すると、最初にこのステータスアイコンが表示されます。数分たってもアイコンが標準ステータスを示さない場合、カスタマーサポートにご連絡ください。

1 6 BOND-ADVANCE の操作方法

16.1 BOND-ADVANCE システムの再起動

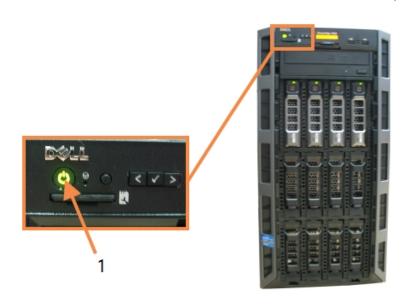
次のいずれかの場合にのみコントローラーの再起動を行う必要があります:

- Leica Biosystems のカスタマーサポートから指示された場合
- 計画停電の準備をしている場合

BONDシステム全体を再起動する際には以下の方法を用いてください。

- 1 全 ての処理 モジュールの動作 が停止していること(つまり、スライドトレイがロックされていないこと)を確認します。
- 2 **全て**の処理 モデュールの電源 が切ってあること。
- 3 全てのターミナルの電源が切ってあること(スタート>シャットダウンをクリックする)。
- 4 電源ボタンを短く押して第二コントローラー(存在している場合)の電源を切る(たとえば下を参照)。
- 5 電源 ボタンを短 〈押 して一次 コントローラー の電源 を切 る (図 16-1を参照)。

電源ボタンはコントローラーの着脱式カバーの背後にあります。これはロックされていることがあります。この場合、鍵の保管担当者から鍵を借用する必要があります。


Windows のログイン画面でシャットダウンプロセスが停止した場合、電源ボタンを2回押さなければならないので、シャットダウンの際にはダッシュボード画面をよく見ていてください。この場合、90秒以上待ってから、もう一度電源ボタンを短く押してください。

もう一度電源ボタンを押すとコントローラーがシャットダウンを開始します。この際にボタンを2秒以上押し続けないでください。「ハード」リセットが起こってコントローラーが瞬時に停止します。この場合、コントローラーの電源が切れる(電源ボタンが消灯する)まで最長45秒かかることがあります。

- 6 2分待ってから、一次コントローラーの電源を入れてください。 「シャットダウンイベントトラッカー」ウィンドウが表示されたら、キャンセルをクリックするか **<Esc>** キーを押してください。
- 7 30秒待ってから、第二コントローラーの電源を入れてください(存在する場合)。
- 8 コントローラーが全て再起動してからターミナルの電源を入れてください。
- 9 全ての処理モデュールの電源を入れます。
- 10 各ターミナルにログオンします。

図 16-1:前面パネルにあるコントローラーの電源ボタン(図はカバーを外した状態)

凡例

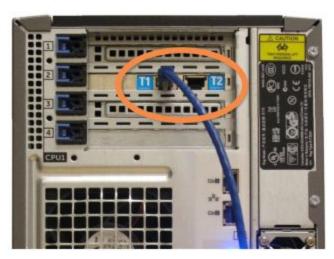
1 電源 ボタン

16.2 第二 コントローラーへの切り替え

この手順は、第二(バックアップ) コントローラーが含まれるBOND-ADVANCE システムにのみ適用 されます.次のいずれかの場合にのみコントローラーの再起動を行う必要があります:

- Leica Biosystems のカスタマーサポートから指示された場合
- 一次 コントローラーが動作していない場合。

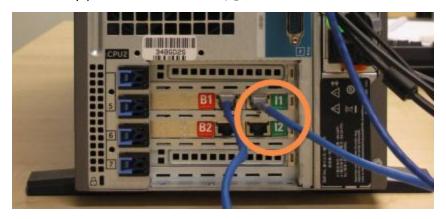
第二コントローラーはスタンドアロンモードで作動しますので、ご利用のシステムでは冗長バックアップ機能は利用できなくなります。ただし、この手順を完了した後、BONDシステムは通常どおり処理を続行します。



切り替え処理中に、最後の5分間に処理したデータが失われる可能性があります。また、切り替え処理中に送信されたLISメッセージが消去される場合があります。したがって、切り替えに成功したら、スライドが欠けているかどうかを確認します。スライドが欠けている場合、LISを通してスライドデータを再送するか、手動でBOND内に欠けているスライドを作成します。

- 1 全 BOND-ADVANCE ターミナル上の臨床 クライアントと管理者の全てのインスタンスを閉じます。
- 2 一次 コントローラーの **T1 または T2** のラベルの付いたポートから、ターミナルネットワークケーブルを外して、第二 コントローラーの同じポートにケーブルを再接続します。

図 16-2を参照。



3 第一コントローラーで | 1 または | 2 のラベルの付いたポートから処理 モジュールのネットワークケーブルを 外して、第二コントローラーの同じポートにケーブルを接続します。

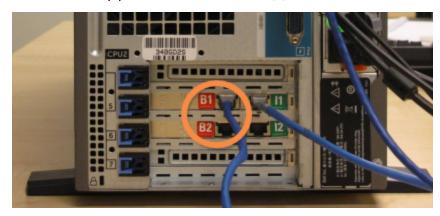

図 16-3を参照。

図 16-3: コントローラーの処理 モジュールのポート

4 一次 コントローラーの B1 または B2 ポートからブリッジネットワークケーブルを外します。 図 16-4を参照。

5 一次 コントローラのポート Gb(1) または Gb(2) にイーサネットケーブルがある場合 (オプションの LIS の接続機能に使用)、その接続を外して、二次 コントローラコントローラーの同じポートに再接続します。 図 16-5を参照。

図 16-5:LIS 用 イーサネットポート

BOND-ADVANCE システムは、第二コントローラーにネットワークケーブルが接続されていて、全てのターミナルに確認ダイアログが表示されていることを検出します。

図 16-6を参照。

図 16-6:ダイアログ - 第二(バックアップ) コントローラーの接続

ゼカンダリー(バックアップ)コントローラが接続されて現在、BOND-ADVANCE ターミナルがセカンダリー(バックアップ)コントローラに接続されていることを、システムは認識しました。もしプライマリーコントローラーに何らかの問題があり、セカンダリーコントローラーをスタンドアローンコントローラーとして操作を続行したい場合は、ユーザー名とパスワードを入力し、「OK」をクリックしてください。この操作を元に戻すには、Leica 担当者の現地での作業を必要とします。 操作を続行する場合、カスタマーサポートに連絡し、接続されないコントローラーの修理サービスを手配してください。 Leicaのサービス担当者は、接続されていないコントローラーを修理または交換しなければなりません。 ユーザー名: パスワード:

切り替えは、Leica Biosystems の担当者のオンサイトサポートなしに元に戻すことはできません。

- 6 切り替えの続行を確認するには:
 - a表示されたフィールドにユーザー名とパスワードを入力します。
 - b **OK** をクリックして確認します。

これを実行する前に、別のユーザーが切り替えの続行を選択した場合、上記のダイアログは表示されません。

7 切り替えを確認したら、一次コントローラーの電源を切ります。

8 スタンドアロンへの変換が成功したことを告げるシステムプロンプト(図 16-7を参照)が表示されたら、次に、クライアントを再起動し、通常どおりにシステムにログオンします。

図 16-7:ダイアログ - スタンドアロンへの変換成功

スタンドアロンへの変換に成功しました まだ接続されていない場合には、機器ネットワークケーブルを、二次コントローラ (既にスタンドアロンになっている) のポート I1 または I2 に接続してください。 すると、直ちに手動データベースバックアップが開始されます。

ОК

9 直ちに管理者を開いて、手動でデータベースのバックアップを実行します。10.5.1 施設設定を参照。 第二コントローラーに切り替えると、全てのスライドと処理モジュールのステータスが自動的に更新されて最新のシステムステータスになります。ただし、処理モジュールがコントローラーから切断されてる間に処理が完了した場合、処理ステータスはまだ実行中と表示されます。この場合、スライド染色ユニットのステータスを更新するため、該当するスライドトレイのロックを解除する必要があります。

カスタマーサポートに連絡して、切断したコントローラーのサービスを手配してください。Leica Biosystems のサービス担当者は、接続されていないコントローラーを修理または交換しなければなりません。

17 スライドラベルプリンターの交換

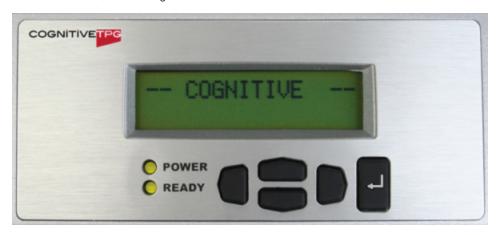
17.1 シングルシートシステムで Cognitive Cxi プリンターを交換 する

以下の手順を使用して、Cognitiveプリンターを新規Cognitiveプリンターと交換します。

- 1 旧プリンターの側面にある電源ボタンを押して電源を切ります。
- 2 旧プリンターの背面からUSBケーブルと電源ケーブルを外します。
- 3 新規プリンターの背面にUSBケーブルと電源ケーブルを接続します。
- 4 新規プリンターの側面にある電源ボタンを押して電源を入れます。 BONDコントローラー画面のデスクトップの通知エリア(右下)に、プリンターが見つかったというメッセージが表示されます。
- 5 Windowsのスタート> デバイスとプリンターを選択すると、新たに追加されたプリンターが見つかります。
- 6 このプリンターを右クリックし、プロパティを選択し、プリンター名をコピーします。
- 7 管理者のハードウェアの設定画面でスライドラベラータブを開きます(10.6.3 スライドラベラーを参照)。 交換した古いプリンターを選択します。
- 8 プリンター名 フィールドに貼り付けて(つまり、既存の名前を上書きして)、たとえば、「Cognitive Cxi 2 inch 300 DPI TT (コピー1)」となるようにします。
- 9 保存をクリックします。
- 10 テストラベルを印刷してプリンターの動作を確認します。

17.2 BOND-ADVANCE システムでCognitive Cxiプリンターを交換する

BOND-ADVANCE システムに新規プリンターを接続する前に、新規プリンターのスタティックIPアドレスを旧プリンターと同じ値に設定する必要があります。


プリンターの IP アドレスは 192.168.5.101 から始まります。各プリンターでは最後の数値のみが異なります。たとえば、プリンター2の IP アドレスは 192.168.5.102 です。

下の手順では旧プリンターのIPアドレスの値を見つけてその値を新規プリンターに設定する方法を説明します。

Cognitive プリンターの前面 パネル

図 17-1にはCognitive Cxi プリンターのLCD パネルが表示してあります。

旧プリンターのIPアドレスを読み取る

旧プリンターでIPアドレスの値を見つけ、それを新規プリンターで使用するには、下の手順を実行します。

何らかの理由で旧プリンターのディスプレイが使用できない場合には、手順プリンターのIPアドレスの見つけ方を使用してコントローラーのIPアドレスを見つけてください。

1 を押します。

画面にMain Menu: Language Menuが表示されます。

- 2 を押 すとPrinter Setupオプションが表示されます。
- 3 ┛ を押 すとPrinter Setup: Comm. Menuが表示されます。
- 4 e押 すとComm. Menu: Timeoutが表示されます。

- 5 を2回押すとEthernetが表示されます。
- 6 を押します。

画面にEthernet - DHCPが表示されます。

7 ┛を押します。

画面にDHCP Offが表示されます。(DHCP Onが表示された場合、 を押すと値が変化します).

8 ┛を押します。

画面に、メッセージ「値が設定された」が表示されます。

- 9 **を押すとスタティックIPの設定が表示されます。**
- 10 **を**押 す と現在の設定 が表示 されます。
- 11 スタティックIPアドレスを記録します。
- 12 このプリンターの電源を切り、コンセントとネットワークからケーブルを抜きます。

プリンターのIPアドレスの設定

下の手順を実行し、新規プリンターに正しいスタティックIPアドレスを設定します。

注意:下の手順を実行するまで、新規プリンターをBONDネットワークに接続してはなりません。

- 1 新規プリンターをコンセントに接続し、プリンターの側面にある電源スイッチを入れます。
- 2 **を**押します。

画面にMain Menu: Language Menuが表示されます。

- 3 **を**押 すと**Printer Setup**オプションが表示されます。
- 4 を押 すとPrinter Setup: Comm. Menuが表示されます。
- 5 🗗 を押 すとComm. Menu: Timeoutが表示されます。
- 6 **を**2回押すと**Ethernet**が表示されます。
- **7 □** を押します。

画面にEthernet - DHCPが表示されます。

8 を押します。

画面にDHCP Offが表示されます。(DHCP Onが表示された場合、 を押すと値が変化します).

9 を押します。

画面に、メッセージ「値が設定された」が表示されます。

- 10 を押すとスタティックIPの設定が表示されます。
- 11 [←] を押すと現在の設定が表示されます。
- 12 旧プリンターから記録したIPアドレスを入力します。左と右のボタンを使ってカーソルを左右に移動し、上と下のボタンを使って数値を変更します。
- 13 を押します。

画面に、メッセージ「値が設定された」が表示されます。

- 14 **を**数回押し、メインの-- **COGNITIVE** -- 画面に戻ります。
- **15** プリンターの側面にある電源ボタンを押してオフ位置にします。続いてもう一度押してオン位置にします。
- 16 新規プリンターにイーサネットを接続し、BONDネットワークに接続します。

図 17-2: イーサネットコネクター

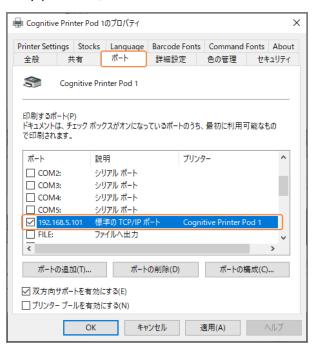
17 管理者を開き、テストラベルを印刷します。

プリンターのIPアドレスの見つけ方

旧プリンターからIPアドレスが読み取れなかった場合、以下の手順を使って新規プリンターのIPアドレスを決定します。

- 1 BONDDashboard としてBOND-ADVANCE コントローラーにログオンします。
- 2 Windows ロゴキー → + M を押して、ダッシュボード画面を最小化します。
- 3 Windows タスクバーで Start ボタンをクリックし、Devices and Printers を選択します。

4 該当するCognitiveプリンターアイコンを右クリックし、図 17-3に表示されているように、ポップアップメニューからPrinter Propertiesを選択します。


図 17-3: Printer Propertiesの選択

システムは**Properties** ダイアログボックスを表示します。

5 Ports タブを選択します。

図 17-4:プリンターのプロパティ-ポートタブ

- 6 選択されたプリンターのPort コラムのIPアドレスを記録します。(コラムの境界線をドラッグしてPort コラムの幅を広げなければならないことがあります。)
- 7 Cancelをクリックしてダイアログボックスを閉じます。
- 8 Devices and Printers ウィンドウを閉じます。
- 9 Alt+Tabを押してBONDダッシュボードを表示します。
- 10 ステップ6のIPアドレスを使用してプリンターのIPアドレスの設定の手順を実行します。

17.3 シングルシートシステムでZebra Printerを Cognitive Cxi プリンターに交換する

以下の手順を使用して、Zebra TLP 3842 またはGX430tプリンターをCognitive Cxi プリンターに交換します。

Zebra プリンターが「パラレル」ケーブルで接続されていた場合、BOND コントローラーからそれを外 すことができます。Cognitive プリンターをBOND コントローラーを接続するには、USB ケーブル が必要です。

- 1 Zebraプリンターの側面にある電源ボタンを押して電源を切ります。
- 2 プリンターの背面からパラレルケーブルまたはUSBケーブルと、電源ケーブルを外します。
- 3 コンセントからZebraプリンターの電源ケーブルを外します。
- 4 コンセントにCognitiveプリンターの電源ケーブルを接続します。
- 5 Cognitiveプリンターの背面にUSBケーブルと電源ケーブルを接続します。
- 6 プリンターの側面にある電源ボタンを押して電源を入れます。 BONDコントローラー画面のデスクトップの通知エリア(右下)に、プリンターが見つかったというメッセージが表示されます。
- 7 Windows タスクバーで Start ボタンをクリックし、Devices and Printers を選択します。
- 8 プリンターは「Cognitive Cxi 2 inch 300 DPI TT」と表示されます。
- 9 BOND管理者にログインします。
- 10 ハードウェアウィンドウとスライドラベラータブを開きます。
- **11 プリンターを追加** (画面の左下) をクリックします。
- 12 画面の右パネルに以下の項目を入力します。
 - ディスプレイの名前:プリンターの名前「Cognitive Cxi 2 inch 300 DPI TT」を使用します。
 - プリンターの名前:同じ名前をもう一度使用します。
 - ホスト名:このフィールドは空白にしておきます。
 - プリンターのタイプ: プリンターのモデル「Cognitive Cxi」を使用します。
- 13 保存をクリックします。
- 14 リスト内でZebraプリンターを右クリックします。
- 15 ポップアップオプションから削除を選択します。
- 16 システムに、「プリンターを削除してもよろしいですか?」のメッセージが表示されます。
- 17 はいをクリックします。

18 仕様

このセクションは、BOND-PRIME 処理 モジュールには適用 されません。 別書の BOND-PRIME ユーザーマニュアルを参照してください。

- 18.1 システムの仕様
- 18.2 物理仕様
- 18.3 電力 とUPSの要件
- 18.4 環境仕様
- 18.5 動作仕様
- 18.6 顕微鏡 スライド
- 18.7 輸送 および保存

18.1 システムの仕様

ネットワークの接続要件	イーサネットIEEE802.3, 10/100/1000BASE-T
ネットワークケーブル	RJ-45 コネクター付 CAT5e または CAT6 シールドケーブル
イーサネットスイッチの要件:	イーサネットIEEE802.3, 10/100/1000BASE-T
シングルシート	8 ポートイーサネットスイッチ 5 台 までの処理 モデュールをサポート)
BOND-ADVANCE	8 または16 ポートのイーサネットスイッチ(全部に接続すると、30 台までの処理モデュールをサポートすることができる)
デバイスの仕様	BONDコントローラーおよびターミナルはLeica Biosystemsから入手すること

18.2 物理仕様

	BOND-III	BOND-MAX
寸法	幅 - 790 mm(31.10 in)	幅 - 760 mm(29.9 in)
	高さ-1378 mm(54.25 in)	高さ-703 mm(27.6 in)
	奥行 - 806 mm(31.73 in)	奥行 - 775 mm(30.5 in)
重量(乾燥)	238 kg	120 kg
設置場所の空間に関する条件	上方向:600 mm(24 in) 以上	
	左側:0 mm	
	右側:150 mm(6 in)	
	後方:0 mm。ただし処理モジュールを移動させずに電源コードが引き抜けることを確認してください。	
外部バルク廃液容器 までの最大距離 (BOND-MAX のみ)	~	1 m (40 in)

18.3 電力 とUPSの要件

	BOND-III	BOND-MAX
作動電圧	103.4 V ~ 127.2 V(公称電圧110 V ~ 120 V)	
(後部カバーにファンが1個ある旧モデルの	または	
電源装置を搭載した処理モジュールの場合)	206.8 V ~ 254 V(公称電圧220 V ~ 240 V)	
作動電圧	90 V ~ 264 V (公称電圧 100 V ~ 240 V)	
(後部カバーにファンが2個ある新モデルの電源装置を搭載した処理モジュールの場合)		
電源周波数	50/60 Hz	50/60 Hz
消費電力	1200 VA	1000 VA

18.4 環境仕様

	BOND-III	BOND-MAX
最高使用温度	35°C	35°C

	BOND-III	BOND-MAX
最低使用温度	5°C	5°C
染色性能の要件に適合する温度	18 -26 °C (64 -79 °F)	18 -26 °C (64 -79 °F)
動作湿度(結露なきこと)	30~80%相対湿度	30~80%相対湿度
最大使用高度	0~1600 m(5250 ft.)海抜	0~1600 m(5250 ft.) 海抜
騒音レベル(1m位置)	最大85 dBA未満	最大85 dBA未満
	通常運転時65dBA未満	通常運転時65dBA未満
最大加熱エネルギー出力	1200 VA	1000 VA

18.5 動作仕様

	BOND-III	BOND-MAX
スライド枚数	一度に30枚。	
	終了したトレイ(10枚スライド)できる。	を、連続的に置き換えることが
試薬コンテナ容量	7 mLおよび30 mL	7 mLおよび30 mL
試薬容器のデッドボリューム	555 µL(7 mL) および1618 µL(30 mL)	
試薬容器の予備量	280 µL (7 mL) および 280 µL (30 mL)	
タイトレーションキット容量	6 mL	6 mL
タイトレーションキットのデッドボリューム	300 µL	300 μL
タイトレーションキットの予備量	280 µL	280 μL
試薬コンテナ数	36	36
バルク試薬コンテナ容量	2 L または 5 L	1 L または 2 L
有害廃液容器容量	5 L	2 L
標準廃液容器容量	2 x 5 L	~
外部バルク廃液容器容量	~	9 L
化学的適合性	あらゆる BOND 試薬 70% アルコール溶液(クリーニング用)	
温度表示	デフォルト(担当サービスエンジニアのみが変更可能):暖: 35℃、高温:80℃	
ガスおよび液体接続部の最大許容圧力	1.0 bar	2.5 bar

	BOND-III	BOND-MAX
耐用年数	7年	7年
BOND システムサイバーセキュリティ証明書の有効期限	10年	10年

18.6 顕微鏡 スライド

寸法	幅:24.64 ~ 26.0 mm(0.97 ~ 1.02 in)
	長さ: 74.9 ~ 76.0 mm(2.95 ~ 2.99 in)
	厚さ: 0.8~1.3 mm(0.03~ 0.05 in)
ラベル領域	幅:24.64 ~ 26.0 mm(0.97 ~ 1.02 in)
	長さ: 16.9 ~ 21.0 mm(0.67 ~ 0.83 in)
素材	ガラス、ISO 8037/1
使用可能エリア	以下の図を参照してください.以下の図を参照してください。分注量は、BOND ソフトウェアでスライドを設定する際に選択できます(6.3 ケースの作業を参照)。

図 18-1: BOND 処理 モジュールで使用 できるスライドのエリア

	100 μL	150 µL
BOND-III		
BOND-MAX		

18.7 輸送および保存

保存温度	-20 ~ +55 °C
保管湿度(結露なきこと)	相対湿度 80% 未満
輸送方法	陸上運送と航空運送と海上輸送の併用可。

上記の情報は梱包状態の処理モジュールにのみ適用されることにご注意ください。

開梱した処理モジュールについては、18.4環境仕様を参照してください。

索引

Γ	1
「24時間 ケース」オプション[24じかんけーすおぶしょん]	IDイメージャー
	クリーニングとメンテナンス[くりーにんぐとめんてなんす]300
В	IDスキャナー、ハンディ[IDすきゃなー、はんでい]
BOND 352	試薬の登録[しや〈のとうろ √
BOND-ADVANCE、説明[BOND-ADVANCE、せつめい] 72	IEC 60417
Bond Aspirating Probe Cleaning System[Bond Aspirating Probe Cleaning System]	IHC 原理[IHC
BOND Polymer Refine Detection System[BOND Polymer Refine Detection System]	げんり
BOND RX システムの構造[BOND RXしすてむのこう ぞう71	原理[ISH げんり]321
BOND システム[BONDしすてむ] 35	ISO 15223-1
BOND システムマネージャー[BONDしすてむまねー じゃー]	ISO 7000
BONDコントローラー 71	ISO 7010
BONDシステムの設定[BONDしすてむのせってい]224	1
BONDについて、ダイアログ[BONDについて、だいあ	L
ろぐ]	Leica Biosystems への連絡方法 3
С	LISインテグレーションパッケージ[LISいんてぐれー しょんぱっけーじ]264
CEマーク	BONDの設定[BONDのせってい]227
CISPR 11 (EN 55011)	LISデータの取得[LISでーたのしゅと]
Cognitive Cxi プリンターを交換 する346-347	LISのプロパティ[LISのぷろぱてぃ]268 エラー[えらー]270
Covertile	ケース[けーす]
クリーニングとメンテナンス[くりーにんぐとめんてな	ケースおよびスライドのデーダけーすおよびすら
んす]288	いどのでーた] 271
	スライド[すらいど]
F	スライドラベル[すらいどらべる]273 テータスパネル[すて一たすぱねる]266
<u> </u>	ライセンス[らいせんす]
FCC	γ Cγ / η σ · C · C / η · · · · · · · · · · · · · · · · · ·

公式マーカー名[こうしきまーかーめい]267 接続と初期化[せつぞくとしょきか]269	オペレーター、ユーザーの役割[おぺれーたー、 ゆーざーのやくわり]
優先スライド(ゆうせんすらいど)	設定[せってい]
用語[ょうご]	説明[せつめい]
LISスライドデータフィールド[LISすらいどでーた	
ふぃーるど]	カ
LLS(液量の検知)[LLS(えきりょうのけんち)]201	カバー[カバー]
_	カバー[カバー] クリーニング[くり一にんく]300
P	
PDF、レポート[PDF、れぽーと]	ガラススライド[がらすすらいど]
TELL AND THE BLANCE OF	仕様[しょう355
U	ク
UPI[UPI]	
. 1	クリーニング[くりーにんく]276
Z	クリーニングスケジュール[くりーにんぐすけじゅーる] .277
	//
Zebra プリンターの交換 [Zebra ぷりんたーのこうかん] 351	ケ
P	ケース[けーす]
<u></u>	ID[ID]
アクセスレベル、ユーザー役割を参照[あくせすれべる、ゆーざーやくわりをさんしょう]77,225	LIS266
	コピー[こぴー]139
アッセイ検証[あっせいけんしょう	デフォルトの設定[でふぉるとのせってい] 241
アラーム[あらーむ]	削除[さくじょ]139
	重複[ちょうふ ()
1	詳細の入力、クイックスタート[しょうさいのにゅうりょく、くいっくすたーと]91
インストールと輸送のハザードいんすと一るとゆそ	追加[ついか]137
うのはざーど]	復活[ふっかつ]
•	編集[へんしゅう]
	
才	臨時作成[りんじさくせい]154
オープン容器[おーぷんようき]	ケースID[けーすID]
を補充する[をほじゅうする]204	LIS、重複[LIS、ちょうふ \228
	とケース番号[とけーすばんごう]136
	ケースIDの複製[けーすIDのふくせい]
	BONDケース[BONDけーす] 138

LISケース[LISけーす]228	説明[せつめい]	63
ケースとスライドのデフォルトの設定[けーすとすら	スケジュール[すけじゅーる]	
いどのでふぉるとのせってい]241	クリーニングとメンテナンス[くりーにんぐとめんんす]	
コ	ステータス画面[すてーたすがめん]	102
コントローラー、BONDコントローラーを参照 71	LISシステム[しすてむ]	
コントロール[こんとろーる]	スライドステータス[すらいどすて一たす]	
IHC用陰性試薬[IHCょういんせいしや √329 ISH用試薬[ISHょうしや √330	ハードウェアステータス[はーどうぇあのすてー す]	
作業[さぎょう]	バルク容器[ばるくようき]	
組織[そしき]	プロトコール[ぷろとこーる]	
	試薬のステータス[しやくのすてーたす]	107
サ	スライドID[すらいどID]	152
サービスログ[さーびすろく]	スライド、ガラス、種類と寸法[すらいど、がらす しゅるいとすんぽう	
	スライド(すらいど)	
シ	コピー[こぴー]	146
システム[しすてむ]	セットアップ画面[せっとあっぷがめん]	
ステータス画面[すて一たすがめん]103	データのエクスポート[で一たのえくすぽーと]	
レポート[レポート] 86	デフォルトの設定[でふぉるとのせってい] レポートの設定[れぽーとのせってい]	
構造[こうぞう]	ロード[ろーど]	
仕様[しょう352	画像取得後のステータス「がぞうしゅとくごの	
説明[せつめい]	て一たす]	115
システムの起動[しすてむのきどう]	互換性[ごかんせい]	157
点検[てんけん]89	互換性なし[ごかんせいなし]	
シリンジ[しりんじ]	削除[さくじょ]	
クリーニングとメンテナンス[くりーにんぐとめんてな	使用領域[しょうりょういき] 自動識別[じどうしきべつ]	
んす]305		
シングルシートインストール[しんぐるしーといんす と一る] 71	識別、手動にさくが、しゅと オ 識別、手動オンボード(しきべつ、しゅどうお ぼーど)	h
	詳細の入力、クイックスター ト[しょうさいのに りょく、くいっくすた一と]	こゅう
ス	設定、クイックスタート[せってい、くいっくすた	2-
スキャナー、ハンディすきゃなー、はんでい	とり	
検出システムの登録[けんしゅつしすてむのとう	設定、概要[せっ(い、かいょう 設定[せってい]	
3 ∮205	脱 パラフィンスライド[だつぱらふぃんすらいど	

追加[ついか]	セグメント、試薬[せぐめんと、しやく 編集[へんしゅう]172
スライドデータのエクスポート[すらいどでーたのえく すぽーと]221	ソ
スライドとケースの臨時作成[すらいどとけーすのり んじさくせい]154	ソフトウェア[そふとうぇあ] シャットダウン[しゃっとだうん]
スライドトレイ[すらいどとれい]67 スライドのラベルの印刷[すらいどのらべるのいんさ つ]150	概要[がいょう 70 起動[きどう 74 更新[こうしん] 87
スライドのロード[すらいどのろーど] 95 スライドの自動識別[すらいどのじどうしきべつ] 119 スライドの識別[すらいどのしきべつ] 119 自動[じどう] 147 手動オンボード[しゅどうおんぼーど] 119	ソフトウェアのアップデート[そふとうぇあのあっぷでーと]
スライドの手動識別[すらいどのしゅどうしきべつ] 147	ターミナル[たーみなる]71
スライドラベラー[すらいどらべら一]	タイトレーションキット[たいとれーしょんきっと] 325 タイトレーションコンテナ[たいとれーしょんこんてな] 68 ダッシュボード[だっしゅぼーと]
スライド染色 ユニット[すらいどせんしょくゆにっと] 44 クリーニングとメンテナンス[くりーにんぐとめんてな	テ
んす]	ディップテスト[でぃっぷてすと]
スライド履歴[すらいどりれき]	こうしん]
セ	データベースの復元[でーたベーすのふ & f ん] 242 デッドボリューム[てっどぼりゅーむ]
セグメント、試薬、プロトコールでの、説明[せぐめ んと、しやく、ぷろとこーるでの、せつめい]170	テンプレート、ラベル[てんぷれーと、らべる]229

	バルク液プローブ[ばるくえきぷろーぶ]
F	クリーニング[くりーにんく]304
ドリップトレイ[どりっぷとれい]301	バルク容器[ばるくょうき]48
バルク容器[ばるくょうき]301	クリーニングとメンテナンス[くり一にんぐとめんてなんす]280
処理 モジュールトレイ	ステータス[すて一たす]112
	無効化[むこうか]246
<u> </u>	バルク容器の無効化[ばるくようきのむこうか]246
バーコードスキャナー、ハンディ[ばーこーどすきゃ なー、はんでぃ]	バルク容器照明システム[ばるくょうきしょうめいし すてむ] 51
説明[せつめい]	バルク溶液ロボット、説明[ばるくようえきろぼっと
バーコードスキャナー、ハンディバーコードスキャナーを参照[ばーこーどすきゃなー、はんでぃばーこーどすきゃなーをさんしょう205	せつめい]
ハードウェアステータス[は一どうぇあのすて一たす] . 105	検出システムの登録[けんしゅつしすてむのとう
ハードウェアの設定[はーどうぇあのせってい]244	3 4
ハザード	説明[せつめい]
インストール 8 運転時[うんてんじ] 9 試薬[しや ↓ 9 装置の操作 5 電気的[でんきてき] 8	とーター[ひーたー] 44 ヒーターのエラー[ひーたーのえらー] 106 ヒューズ[ひゅーず] 309
インストールと輸送[いんすと一るとゆそう]8 メカニカル[めかにかる]	フ
化学的[かがくてき]6	ファンクションバー[ふぁんくしょんかばー]
電気的[でんきてき]	クリーニング[くりーにんく]
ハザード廃液[はざーどはいえき]198	プリンター[ぷりんた一]
パスワード、BOND[ぱすわーど、BOND]226	•
パネル[ぱねる]	スライドラベラー[すらいどらべらー]
画面[がめん]210	プローブの分注[ぷろーぶのぶんちゅう]
作成[さくせい]	プロトコール[ぷろとこーる]
追加[ついか]	あらかじめ定義 されたプロトコールのリスト[あらかじめていぎされたぷろとこーる]187
パラレル二重染色[ぱられるにじゅうせんしょ⟨ 161	インポート[いんぼーと]

セットアップ画面[せっとあっぷがめん]160	
リスト[りすと]165, 227	*
レポート[れぽーと]186	<u></u>
試薬セグメント、説明[しやくせぐめんと、せつめ	メカニカルハザード[めかにかるはざーど]
(3)	メンテナンス、予防[めんてなんす、よぼう276
実行[じっこう] 99	メンテナンス[めんてなんす]276
実行の概要[じっこうのがいよう]	・ メンテナンススケジュール[めんてなんすすけじゅー
処理の終了[しょりのしゅうりょう]100	3]277
染色[せんしょ\]	メンテナンスレポート[めんてなんすれぽーと] 130
間処理[まえしょり169 調製[ちょうせい]	
二重染色の編集[にじゅうせんしょくのへんしゅ	メンテナンス画 面[めんてなんすがめん]129
う164	
表示[ひょうじ]167	ユ
編集[へんしゅう170,237	
プロトコールの実行、簡単な概要[ぷろとこーるの	しゅう
じっこう、かんたんながいよう31	ューザーの役割[ゆーざーのやくわり]
^	設定[せってい]
	ユーザー名[ゆーざーめい]226
ベーキング[ベーきんく]326	
ヘルプ 85	ラ
アクセス[あくせす] 29	= / los == 110 :=[
	ライセンス、LIS-ip[らいせんす、LIS-ip]228
ホ	ライフタイム、ケース[らいふたいむ、けーす]138
	ラベラー、スライド(らべらー、すらいど)
ポッド[ぼっど]	ラベル
管理[かんり]247	クイックスター ト[くりっくすたーと]94
説明[せつめい]71-72	とLIS[らべると
	LIS] 273
マ	印刷[いんさつ]150
	概要[がいよう]150
マルチシートインストール[まるちしーといんすとーる]71-72	情報 タイブ[じょうほうたいぶ]235
ଚ]/۱-/2	設定[せってい]
_	ラベル ID[らべるID]152
3	
ミキシングステーション[みきしんぐすてーしょん] 55	l _e
(コンフ/ ハ/ - ンヨン[からしかくす (こしまい] 99	
	レイアウト、ラベル[れいあうと、らべる]229

レガシーレポート れがしーれぽーと85	
レポート[れぽーと]	医
ケース[けーす]218	E TE UZ I I I I I I I I I I I I I I I I I I
システム[しすてむ] 86	医師 リスト[いしりすと]141
スライドのエクスポート[すらいどのえくすぽーと] . 221	N-ex
スライド処理のサマリー[すらいどしょりのさま	進
り一]	運転時のハザードづんてんじのはざーど
スライト設定[すらいとせっ(い]153 プロトコール[ぶろとこーる]186	建報時のバット[/// こ/// このはら こ]
簡単なスライド履歴[かんたんなすらいどりれき] 223	ЭĦ
試薬の使用[しやくのしょう]	温
処理イベント[しょりいべんと]	温度、表示[おんど、ひょうじ]107
処理詳細[しょりしょうさい]217	
レポートのエクスポート[れぽーとのえくすぽーと] 84	改
レポートの印刷[れぽーとのいんさつ]	<u>以</u>
	改訂履歴 4
-	
	管
ログ、サービス[ろぐ、さーびす] 87	<u> </u>
ロボット[ろぼっと]	管理者、ユーザーの役割[かんりしゃ、ゆーざーの
バルク溶液[ばるくようえき]57	やわり
バルク溶液 ガイドレール[ばるくようえきがいど	設定[せってい]
れーる] 57	説明[せつめい]
メインロボットとIDイメージャー[めいんろぼっと	管理者[かんりしゃ]224
あーむとDいめーじゃー]43 メインロボットのクリーニングとメンテナンス「めい	ata t
メイフロホットのクリーニングとメンテテンス[めい んろぼっとのくり一にんぐとめんてなんす]300	機
•	機器の分類[ききのぶんるい] 11
ワ	
<u>, </u>	
ワークフロー[わーくふろー]	規
「24時間ケース」オプション[24じかんけーすおぶ	規制記号 12
[L s h]	規制通達[きせいつうたつ]
スライドとケースの臨時作成[すらいどとけーす のりんじさくせい]154	
,	学 口
安	記
<u> </u>	記号[きごう]
安全記号 17	安全性 17
	記号 およびマーキング[きごうおよびまーきんく] 16

記号の用語集12	あくせさり一しや↓
記号の用語集[きごうのょうごしゅう]	互換性のないスライド[ごかんせいのないすらいど] 118
吸	後
吸引プローブ[きゅういんぷろーぶ]	後部 カバー、説明[こうぶかばー、せつめい] 60
クリーニング[くりーにんく]	公
業	公式 マーカー名[こうしきまーかーめい]267
業務用体外診断装置に関する指示	抗
空	
空、試薬パッケージをとしてマークする[から、しやく ぱっけーじをまーくする]	最
空の容器の再充填[からのょうきのさいじゅうしん] 204	最小在庫の設定[さいしょうざいこのけってい]203
数	在
警告[けいこ4	在庫画面、試薬[ざいこがめん、しや 🖣199
検	作
検出 システム[けんしゅつしすてむ]	作業セル[さぎょうせる]
BOND Polymer Refine Red[BOND Polymer Refine Red]	削
BOND、概要[BOND、がいよう321 在庫レポート ざいこれぽーと208	削除[さくじょ]
説明[せつめい]	ケース[けーす]
登録[とうろ \	ポッド[ぽっと]
互	試薬[しや∮199
互換性[ごかんせい]	仕
スライド[すらいど]157	仕様[しょう]
バルク溶液 とアクセサリー試薬[ばるくようえきと 198	ガラススライド[がらすすらいど]355

処理 モデュール[しょりもじゅーる]	試薬トレイ[しやくとれい]
	説明[せつめい]67
使	試薬と検出装置の登録[しやくとけんしゅつそうち のとうろく
使用目的[しょうもくてき]10	試薬のステータス[しや〈のすてーたす]107
126	試薬ハザード9
施	試薬量[しやくりょう]148
施設、設定[しせつ、せってい]240	
施設の設定[しせつのせってい]	実
試	実行の中止[じっこうのちゅうし]126
試薬[しゃ ↓	重
ID[ID]193	
セットアップ画面[せっとあっぷがめん]195	重複試薬ステップ(プロトコールでの)[ちょうふくしやくすてっぷ(ぷろとこーるでの)]
パネル画面[ぱねるがめん]210	,
ロード[ろーど]	<i>Н</i> п
管理[かんり]	処
空のパッケージ[からのぱっけーじ]	処理の終了[しょりのしゅうりょう100
空の容器の再充填[からのょうきのさいじゅうしん]204	処理 モジュールの操作[しょりもじゅーるのそうざ] 5
在庫レポート ざいこれぽーと	処理モデュール[しょりもじゅーる]
在庫画面[ざいこがめん]199	
削除[さくじょ]199	クリーニングとメンテナンス[くりーにんぐとめんてなんす]276
使用レポート[しょうれぽーと]209	タブ[たぶ]
手動識別[しゅどうしきべつ]207	再起動[さいきどう296
代用[だいよう194	仕様[しょう353
追加/編集[ついか/へんしゅう]197	初期化[しょきか] 42
登録[とうろ]	状態[じょうたい]105
分量の測定[ぶんりょうのそくてい]	設定[せってい]244
問題の解決[もんだいのかいけつ]110	説明[せつめい]37
試薬ステップ(プロトコールでの)[しやくすてっぷ(ぷろ	輸送および保存[ゆそうおよびほぞん]356
とこーるでの)]	処理を開始[しょりをかいし]126
重複[ちょうふ 4174	遅れて開始[おくれてかいし]127
試薬 セグメント[しやくせくめんと]	処理済みケースのライフタイム[しょりずみけーすの
説明[せつめい]170	
mu // [c > % ·]	らいふたいむ]138

上	全
上部プレート、交換[じょうぶぷれーと、こうかん] 292	全 ユーザーを対象 とした重要情報
製	組
製造業者 1	組織調製[そしきちょうせい]
製品識別情報	
<u></u>	装
	装置の操作に関するハザード(そうちのそうさにか
赤色、検出システム[あかいろ	んするはざーと]5
けんしゅつしすてむ]322	ΔD
赤色、試薬在庫画面に強調表示[あかいろ、し	代
やくざいこがめんにきょうちょうひょうじ]203	代用試薬[だいょうしや ↓194
設	第
設置ハザード8	
設定[せってい]	第一ステップ[だいいちすてっぷ]30
スライド[すらいと]	脱
試薬[しや∮96	<u> </u>
洗	脱 パラフィン[だつぱ らふぃん]152, 326
洗浄ブロック[せんじょうぶろっ√ 55	遅
N.E.	遅れて開始[おくれてかいし]127
染	
染色[せんしょ{	注
解釈[かいしゃ 🕽	注意 8
染色 モード[せんしょくもーど]143, 161	
染色法[せんしょくほう]161	著
前	著作権 1
前部 カバー[ぜんぶかば一]	

追	必
追加[ついか]	必要な材料[ひつょうなざいりょう]324
ケース[けーす]	表
試薬[しや↓197	表、並べ替え[ひょう、ならべかえ]
通	品
通知[つうち]	品質管理[ひんしつかんり32
電	恩恵[おんけい]
	賦
電気的ハザード[でんきてきはざービ]	試活化[ふかつか]32
電源 ヒューズ[でんげんひゅーず]	жүнд гц[««» >»]
	復
登	
登録商標[とうろくしょうひょう]	BONDケース[BONDけーす] 13 LISケース[LISけーす] 22
特	4
特定、製品 1	クノ 分注 タイプ[ぶんちゅうたいぷ]180
	刀 在 247 [ふん 5 ゆ かといふ]100
	変
二重染色[にじゅうせんしょく161	
廃	N.E.
廃液容器[はいえきょうき]	法
クリーニングとメンテナンス[くりーにんぐとめんてなんす]286	法的通知事項
ステータス[すてーたす]112	
説明[せつめい]69	

役

役割、ユーザー[やくわり、ゆーざー]
設定[せってい]
輸
輸送[ゆそう]
優
優先スライド、LIS[ゆうせんすらいど、LI]268
有
有効期限切れのケース[ゆうこうきげんぎれのけーす]138
流
流路系のクリーニングとメンテナンスの手順[りゅうろけいのくりーにんぐとめんてなんすのてじゅん] 296
連

連続二重染色[れんぞくにじゅうせんしょく......161