
CERTIFICATE

Inactivation of bacteria, viruses and other pathogens
by UV-C irradiation

in the Leica cryostat product family

1. Summary

UV-C radiation is effective in disinfecting surfaces and air within the irradiated working space of 
the cryostats Leica CM1850UV, CM1860UV, CM1900UV and CM1950 at -20 °C (Table 1).

For high-level disinfection, irradiation for three hours (CM1850UV/CM1860UV/CM1950) and four 
hours (CM1900UV) is recommended. Vegetative bacteria including Mycobacterium tuberculosis, 
bacterial spores (Bacillus sp.) and fungi are inactivated within this period of time. Viruses are 
also inactivated by at least 4 log10 units (99,99 %), including resistant species like hepatitis 
viruses.

Intermediate level disinfection can be achieved by short-term irradiation of 30 minutes 
(CM1850UV/CM1860UV/CM1950) and 40 min (CM1900UV). This reduces vegetative bacteria 
including Mycobacterium tuberculosis and sensitive viruses like Influenza A virus (including 
influenza A type H5N1 and H1N1 viruses) and Poliovirus by at least 5 log10 units (99,999%).

UV-C irradiation within the working space of the cryostats can provide safe and effective surface 
and air disinfection and significantly reduces infection risk.

It is recommended to wipe off visible contamination in the cryostat with an alcohol-based 
disinfectant before using the UV lamp. The germicidal effect of radiation is restricted to directly 
illuminated areas and pathogens not shielded by other material. Therefore, UV-C irradiation 
cannot replace regular chemical disinfection of the cryostat chamber.
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Table 1: Predicted UV-C disinfection efficacy1 for selected pathogens in the
cryostats Leica CM1850UV/CM1860UV/CM1950 and CM1900UV2

Species Irradiation time2

30 min / 40 min 3 h / 4 h

Bacteria3

Bacillus ssp.(vegetative) + +
Bacillus sp. (spores) +
Burkholderia pseudomallei + +
Enterobacter faecium + +
Escherichia coli + +
Klebsiella pneumoniae + +
Mycobacterium tuberculosis + +
Proteus mirabilis + +
Pseudomonas aeruginosa + +
Salmonella ssp. + +
Staphylococcus aureus + +
Vibrio cholerae + +
Yersinia pestis + +

Yeasts3 and molds3

Aspergillus fumigatus (spores) +
Candida albicans + +
Cryptococcus neoformans +

Viruses4

Adenoviruses +
Hepatitis A virus + +
Hepatitis B virus +
Herpes viruses + +
Influenza viruses + +
Poliovirus + +
SARS coronavirus +
Simian virus 40 +
Vaccinia virus + +

+: disinfection achieved

1: valid only for conditions equivalent to those in the tests
2: 40 min/4h irradiation periods apply to the cryostat CM1900UV-series
3: reduction by 5 log10 units (bacteria, fungi incl. yeasts)
4: reduction by 4 log10 units (viruses)
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2. Experiments

Leica Biosystems Nussloch GmbH (formerly Leica Microsystems Nussloch GmbH) contracted 
ecoscope (Amtzell, Germany) in 2004 to evaluate the surface disinfection efficacy of ultraviolet 
irradiation in the Leica cryostat CM1850. The apparatus was equipped with a low-pressure 
mercury arc lamp (sterilAir GmbH, Kürten, Germany).

The evaluation consisted of determining the inactivation by UV-C (254 nm) irradiation of test 
bacteria and viruses on stainless steel surfaces in the cryostat chamber at -20 °C.

In a first project, the bacterium Staphylococcus aureus ATCC 6538 was used as a biodosimetry 
strain. Bacteria were dried onto stainless steel plates from suspensions in distilled water. The 
germ carriers were placed into different, defined positions within the cryostat chamber. It was 
demonstrated that under the specified test conditions, UV irradiation was capable of inactivating 
S. aureus by >5 log10 units after 15 to 30 min irradiation, depending on the position in the 
cryostat (14).

In two independent experimental series, the inactivation of the test virus Simian virus 40 (SV 40, 
a Polyomavirus) exposed to UV-C for different periods of time was investigated. Viruses 
suspended in cell culture medium containing 2 % bovine fetal serum were dried onto stainless 
steel plates. The virus carriers were placed in a fixed position in the cryostat chamber. After 
irradiation, the viruses were rinsed off and in blind tests applied to monkey kidney cell cultures 
(CV-1) for virus propagation. After 12 to 14 and 15 to 18 days incubation, the cell cultures were 
examined for virus-specific cytopathic effects and the infectivity titers were determined. The 
results were presented in a separate test report (15). It was shown that the inactivation of SV 40 
by >4 log10 units was achieved by UV irradiation for 95 to 180 minutes.

Leica Biosystems supplied comparative measurements of UV-C intensities at different positions 
in the working spaces of the cryostats CM1850UV, CM1950 and CM1900UV. The dimensions of 
the working spaces of the cryostats CM1850UV and CM1860UV are essentially the same. The 
UV-C lamps are identical. The experimental results obtained on the cryostat CM1850UV can 
thus be applied also to the other instruments mentioned above.

On the basis of these experimental results and available scientific information the inactivating 
effect of UV-C irradiation in the cryostats on pathogenic microorganisms and viruses could be 
assessed (Table 1). A selection of literature data on UV-C (254 nm) radiation doses required for 
the inactivation of various microorganisms and viruses is summarized in the appendix.

3. The mechanism of UV damage

Low-pressure mercury arc lamp radiation is essentially monochromatic with a peak output at 
253.7 nm, close to the absorption maximum of nucleic acids (DNA, RNA), the carrier of genetic 
information. Absorption of UV photon energy damages the genetic material of microorganisms 
by formation of lesions, in particular through dimerization of adjacent pyrimidines in nucleic 
acids. Accumulated lesions may overwhelm the cellular capacity for repair, induce mutations, 
inhibit replication and thus finally kill the organism (16, 21).
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4. Influence of nucleic acid conformation on UV resistance

Nucleic acids in viral genomes may have different conformations: single-stranded DNA resp. 
-RNA (ssDNA resp. ssRNA) or double-stranded DNA resp. -RNA (dsDNA resp. dsRNA). In 
inactivation experiments on ssRNA and dsRNA obtained from the same virus it was shown that 
ssRNA is more sensitive against UV-C radiation than dsRNA (5, 39, 49). The same is true for 
ssDNA and dsDNA (1, 24, 39, 40, 48). DNA viruses are more sensitive than RNA viruses. These 
results are supported by available data on UV inactivation: ssRNA viruses like Caliciviridae, 
Orthomyxoviridae, Picornaviridae and Togaviridae are entirely highly sensitive, whereas dsRNA- 
and dsDNA viruses of comparable genome size (Adenoviridae, Reoviridae, Polyomaviridae) are 
clearly more resistant to UV-C (Table 2). The differences in sensitivity most probably reflect 
different capacities for host cell repair.

5. Kinetics of UV-C inactivation in microorganisms

Germicidal UV irradiation inactivates pathogens according to the standard decay equation
S = exp (-k*I*t) (first order kinetics). S represents the fraction of the original population that 
survives exposure at time t, and I the light intensity. Mathematical modeling of UV decay curves 
has been reviewed by (23) and (26).

The rate constant k and lethal ultraviolet dosages (I*t) have been determined experimentally for 
a large number of bacteria, fungi, viruses and protozoa in numerous studies. UV-C doses 
required for the inactivation of a selection of microorganisms, especially viruses, are given in the 
appendix. Although the results vary depending on experimental design, UV measurement and 
state of the biological material, a conclusive picture of relative UV-C sensitivities has been 
obtained. By use of biodosimetry test strains, conclusions about UV-C dosages can be drawn 
and predictions made on their effect on other organisms (10, 27).

6. Staphylococcus aureus as a test bacterium

Staphylococcus aureus ATCC 6538 has been chosen as test strain, because it is one of the 
listed test strains in standardized disinfection testing and a potential pathogen in humans. In 
addition, data on the UV-C sensitivity of S. aureus are available from the scientific literature 
(Appendix).

7. SV 40 as a surrogate virus in disinfection testing

A surrogate virus employed in the testing of disinfection methods should respond to the 
disinfectant in question in a similar way as the pathogen against which it was designed. At best, 
the surrogate virus should be somewhat more resistant. Among the different virus groups, small 
dsDNA viruses show the highest resistance against UV-C.

SV 40 was chosen as test virus because of several advantageous properties. It is a relatively 
small virus (ca. 50 nm) possessing a small genome of dsDNA (5.2 kbp) and a very high 
resistance to UV-C radiation (see Appendix). SV 40 propagates in mammalian cells (monkey, 
man). It is classified in risk class 2 and can thus be handled at reasonable expense. The virus 
and a suitable test system (monkey kidney cells) are available.
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SV 40 is biochemically and genetically well characterized. Moreover, SV 40 is one of the test 
viruses in the standardized testing of chemical disinfectants against viruses (8, 30). Contrary to 
the European standard (6, 17), the German Federal Health Office (Robert Koch Institute) 
demands tests on SV 40 in addition to Poliovirus and Adenovirus because it proved to be more 
resistant in some investigations (33).

SV 40 is among the viruses most resistant to UV-C, surpassing vegetative bacteria and bacterial 
spores (see appendix). Scientific data shows that ssRNA- and ssDNA viruses are inactivated 
faster, as well as large dsDNA viruses like herpes viruses and Vaccinia virus, for example. 
Among the small dsDNA viruses, adenoviruses are more sensitive to UV-C than polyomaviruses 
including SV 40. Hepatitis B virus is of similar size as SV 40 (Table 2) and therefore, a similar or 
higher sensitivity to UV-C is postulated. Presence or absence of an viral envelope is irrelevant in 
relation to UV-C sensitivity. In conclusion, SV 40 is regarded as a suitable surrogate for 
pathogenic viruses in UV-C inactivation studies.

Table 2: Overview on important viruses infecting humans and predicted UV-C sensitivity

Virus family Genome
type

Enve-
lope

Genome
size

(kb/kbp)
D90

(mWcm-2) Virus

Adenoviridae dsDNA no 28-45 27-49 Human adenovirus A to F
Arenaviridae ssRNA yes 10-11 3.5 Lassa virus
Astroviridae ssRNA no 6.8 10-12 Astrovirus

Bunyaviridae ssRNA yes 11-12 2.0-3.5 California encephalitis virus
Hantaan virus

Caliciviridae ssRNA no 7.5 9.7-11 Norwalk virus (NoV)
Hepatitis E virus

Coronaviridae ssRNA yes 30 0.7-1.1 SARS coronavirus

Deltaviridae ssRNA yes 1.7 22 Hepatitis D virus (assoc. to 
HBV)

Filoviridae ssRNA yes 19.1 2.0
viruses causing 
haemorrhagic fevers: 
Marburg-, Ebola virus

Flaviviridae ssRNA yes 10-12 6.8-8.4 Hepatitis C virus
Yellow fever virus
Tick-borne encephalitis  
virus

Hepadnaviridae dsDNA yes 3.2 3.8-4.1 Hepatitis B virus (HBV)
Herpesviridae dsDNA yes 125-235 3.5-7.0 Herpes simplex virus 1, 2

Varicella zoster virus
Cytomegalovirus
Epstein Barr virus
Human herpes virus 6, 7
Human herpes virus 8

Orthomyxoviridae ssRNA yes 13.6 2.0-3.0 Influenza viruses A-C
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Papovaviridae dsDNA no 5-8 68-103 Polyomavirus
Papillomavirus (warts)

Paramyxoviridae ssRNA yes 15-16 3.0 Measles virus
Mumps virus
Parainfluenza virus
Human respiratory syncytial  
virus

Parvoviridae ssDNA no 5.5 2.1-3.2 Parvovirus B19
Picornaviridae ssRNA no 7-8 12-14 Hepatitis A virus (HAV)

Poliovirus
Coxsackievirus
Echovirus
Rhinovirus

Poxviridae dsDNA yes 130-375 1.8-4.3 Smallpox virus, molluscum 
contagiosum

Reoviridae dsRNA no 16-27 19-32 Reovirus
Human rotavirus A, B

Retroviridae ssRNA yes 7-11 18-30 Human immunodeficiency 
virus (HIV) types 1 and 2
Human T-lymphotropic  
viruses (HTLV-1, -2)

Rhabdoviridae ssRNA yes 12 0.9-1.2 Rabies virus
Togaviridae ssRNA yes 10-12 4.9-6.5 Rubella virus

Morphological characters apply to the respective virus family.

Abbreviations

D90: UV-C dose required for 90% inactivation (1 log10 unit reduction)
dsDNA: double-stranded desoxyribonucleic acid
dsRNA: double-stranded ribonucleic acid
kb/kbp: x 1000 (kilo) bases resp. basepairs
nm: nanometer = 10-9 m
ssDNA: single-stranded desoxyribonucleic acid
ssRNA: single-stranded ribonucleic acid

The list of viruses was compiled according to a corresponding list published by the Robert Koch Institute in 
cooperation with the German Association for the Control of Virus Diseases and the German Society for 
Hygiene and Microbiology (33), according to the U.S. Departments of Health and Human 
Services/Centers for Disease Control and Prevention (www.cdc.gov/ncidod/dvrd/index.htm), the ICTVdB 
Index of Viruses (www.ncbi.nlm.nih.gov/ICTVdb/Ictv/ICD-10.htm) and the ICTVdB Universal Virus 
Database (www.ncbi.nlm.nih.gov/ICTVdb/index.htm). The predicted values for UV-C sensitivity were 
adopted from (27).
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8. Disinfection: definitions

The guidelines of the German Society for Hygiene and Microbiology (12) for the evaluation of 
chemical surface disinfectants provide that bacteria and fungi are usually inactivated by a factor 
of at least 5 log10 units. This corresponds to the European standard EN 1040 on the testing of 
chemical disinfectants in suspension tests (13).

For the certification of virus disinfection, the guidelines of the German Association for the Control 
of Virus Diseases (Deutsche Vereinigung zur Bekämpfung der Viruskrankheiten e.V. (30)) for 
chemical surface disinfection require a reduction in infectivity by minimum 4 log10 units.

In addition, the following classification scheme of disinfection levels is used:

1. Low-level disinfection can kill most bacteria, some viruses, and some fungi, but it cannot be 
relied on to kill resistant microorganisms such as Mycobacterium tuberculosis or bacterial 
spores.

2. Intermediate-level disinfection inactivates Mycobacterium tuberculosis, vegetative bacteria, 
most viruses, and most fungi, but it does not necessarily kill bacterial spores.

3. High-level disinfection: Destruction of all microorganisms, with the exception of high numbers 
of bacterial spores.

4. Sterilization: Complete elimination of microorganisms and viruses.

These definitions are used by the U. S. Department of Health and Human Services and the 
Association for Professionals in Infection Control and Epidemiology (35), the WHO (42) and 
others.

The standards refer to the effectiveness of chemical disinfectants. In analogy, they are applied to 
surface disinfection by UV-C irradiation in the following.

9. Destruction of bacteria and fungi by UV-C irradiation

Inactivation experiments with Staphylococcus aureus ATCC 6538 showed that the number of 
viable bacteria was reduced by more than 5 log10 units after irradiation for 30 minutes in the 
cryostat CM1850UV. The disinfection efficacy corresponded to the guideline of the German 
Society for Hygiene and Microbiology (12) for surface disinfection methods and to an 
intermediate-level disinfection as defined above.

Disinfection of vegetative bacteria (≥5 log10 units reduction) including Staphylococcus aureus is 
achieved by UV-C dosages of ≤80 mWs cm-2 (Appendix). No literature data are available for S. 
aureus ATCC 6538. However, it is not to be expected that the test strain differs significantly in 
sensitivity from other S. aureus strains. This applies also to Mycobacterium tuberculosis and 
other vegetative bacteria that have potential to pose a severe threat to public health and safety 
(biothreat agents, (10, 34)). The similarity in the UV response allows the prediction that 30 
minutes or 40 minutes UV irradiation achieves disinfection of all vegetative bacteria listed in 
table 1.

Spore-forming bacteria like Bacillus subtilis and B. anthracis, however, are 5 - 10 times more 
resistant to UV-C than their corresponding vegetative cells.
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While the UV-C sensitivity of the yeast Candida albicans compares to that of vegetative bacteria, 
Aspergillus spores and the melanized form of Cryptococcus neoformans are highly resistant to 
UV irradiation (Appendix).

10. Inactivation of viruses by UV-C irradiation

Within the given experimental conditions, an inactivation of the test virus SV 40 by minimum 4 
log10 units was achieved by UV irradiation for 95 minutes and longer in the cryostat CM1850UV. 
This inactivation level corresponds to the accepted guideline of the German Association for the 
Control of Virus Diseases (Deutsche Vereinigung zur Bekämpfung der Viruskrankheiten e.V. 
(30)).

An account of the, compared to other pathogens, high resistance of the test virus SV 40 to UV-C 
(appendix), it can be assumed according to the scientific state of knowledge that other resistant 
viruses including Hepatitis B virus and fungal spores are inactivated to the same extent within 
the same irradiation time and also that vegetative bacteria including Mycobacterium 
tuberculosis, bacterial spores, fungi, and most viruses are destroyed with higher efficiency, as 
long as they are directly subjected to irradiation on surfaces or in the air (Table 1). The 
inactivation effect can be classified as high-level disinfection as defined above.

The test results showed that the effect of irradiation was considerably affected by components of 
the cell culture medium and the addition of 2 % bovine fetal serum: Irradiation periods longer 
than 95 minutes did not result in significantly increased inactivation. This has to be seen as an 
approximation to practical situations. It is recommended to remove visible contamination in the 
cryostat by wiping with disinfectant before using the UV lamp. For this purpose, an alcoholic 
based disinfectant recommended by the cryostat manufacturer should be used.

Dependent on the position in the cryostat, the radiation dose received by a surface area can be 
less than that in the test position used with SV 40. For disinfecting these areas the irradiation 
time has to be increased proportionally. In consideration of results from the study on S. aureus 
(14) and with inclusion of an additional safety margin, a factor of 1.5 + 0.4 = 1.9 is proposed for 
prolongation of the irradiation period. Therefore, irradiation for 3 hours is recommended for high-
level disinfection in directly irradiated areas of the cryostat chamber of the CM1850UV. 
Comparative measurements showed that the incident UV-C radiation on surfaces of the cryostat 
chamber of the CM1950 reaches the same intensity as that in the CM1850UV. The dimensions 
of the working spaces in the cryostats CM1850UV and CM1860 UV are almost identical. 
Accordingly, irradiation for 30 min is also recommended for an intermediate level of disinfection 
in the CM1860UV and CM1950 UV , and 3 hours for high-level disinfection. The UV-C radiation 
intensity on surfaces of the cryostat chamber of the CM1900UV is by 25 % lower than in the 
CM1850UV. Therefore, 40 min resp. 4 hours irradiation are recommended for an intermediate 
resp. high-level disinfection in the CM1900 UV (Table 1).

The test results and assessment of disinfection efficacy refer to the full radiation output of a lamp 
such as employed in the test.

Disinfection at the predicted level is restricted to directly illuminated air and surface areas. 
Organic material may shield pathogens from UV-C radiation.
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11. Influenza viruses

General characteristics

Influenza A viruses represent a continuous pandemic threat and are of current international 
concern. Influenza ("flu") viruses are classified into types A, B or C. All three types can infect 
humans. Influenza A viruses can infect people, birds, pigs, horses, and other animals, but wild 
birds are the natural hosts for these viruses. Influenza type A viruses are divided into subtypes 
based on two proteins on the surface of the virus called hemagglutinin (H) and neuraminidase 
(N). There are 14 hemagglutinin subtypes and 9 neuraminidase subtypes of influenza A viruses, 
and potentially all H/N-combinations are possible.

Influenza viruses are members of the family Orthomyxoviridae. Their genome consists of eight 
segments of linear, single-stranded RNA with a total length of 13,600 nucleotides. Influenza 
viruses are enveloped viruses. In spherical forms, the virion diameter is 80-120 nm (Table 2).

Influenza viruses are readily transmitted by aerosols or by direct contact. Viable virus particles 
can survive at least 48-72 h on contaminated surfaces (3, 4).

Novel influenza H1N1

In spring 2009, human infections caused by a new type of influenza A/H1N1 virus were identified 
in Mexico and the United States. After its discovery, the virus spread rapidly throughout the 
world. Three months later, about 95,000 confirmed cases and 429 deaths were reported. On 11 
June 2009, the World Health Organization (WHO) raised the worldwide pandemic alert level to 
Phase 6 which reflected the fact that there were community level outbreaks in multiple parts of 
the world (9, 46, 47).

The virus originates from a swine influenza A (H1) that has been circulating in American pigs 
years before recognition in humans. The virus contains genes originating from American and 
European pig influenza and from bird and human viruses (this is called a "reassortant virus") and 
is readily transmitted between humans. Because influenza A/H1N1 has never before circulated 
among humans and most people have no or little immunity, it could cause more infections than 
seasonal flu. There are concerns that the virus may reassort with seasonal human influenza 
giving rise to even more transmissible or more pathogenic viruses (2, 18, 22, 28, 29, 37, 38).

Highly pathogenic avian influenza H5N1 ("bird flu")

Avian influenza ("bird flu") is an infectious disease of poultry caused by influenza type A/H5N1 
viruses. An unprecedented epidemic of highly pathogenic avian flu (HPAI) spreads across large 
populations of domestic birds and migratory water fowl in Asia since 2003 and has reached 
Europe in late 2005, Africa in early 2006 (19, 42, 43, 45).

Influenza viruses that infect birds are called “avian influenza viruses”. Only influenza type A 
viruses infect birds. To date, all outbreaks of HPAI have been caused by influenza A viruses of 
subtypes H5 or H7. HPAI is usually associated with high mortality in poultry.

Avian influenza viruses do not normally infect humans. However, there are serious concerns that 
the highly pathogenic avian flu virus evolves human-to-human transmission through the 
acquisition of genetic material from the H1N1 or H3N2 subtypes circulating in human 
populations. This could result in a influenza pandemic with massive fatalities worldwide (11, 20, 
22, 25, 41, 44, 50).
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UV-C inactivation of influenza virus

Viruses like influenza virus with genomes comprised of single-stranded RNA are particularly 
sensitive to UV-C radiation. This is supported by available data on UV inactivation (Table 2, 
Appendix). Accordingly, the decimal UV-C (254 nm) inactivation dose for influenza virus strains 
has been predicted as low as 2.0 - 3.0 mWs cm-2 (7, 27, 36). It is thus in the same range as that 
for vegetative bacteria like Escherichia coli and Staphylococcus aureus. The susceptibility of 
influenza virus to UV-C disinfection has also been noted in (31, 32).

The morphology, general structure and genome organization is practically the same in all 
influenza viruses. Data on UV-C sensitivity of tested human influenza virus strains are thus 
equally applicable to other human and animal influenza subtypes.

It is concluded that a 30 min period of germicidal UV-C irradiation in the cryostats CM1850 
UV/CM1860UV/CM1950 and a 40 min period in the CM1900UV results in an inactivation of 
Influenza A virus by at least 5 log10 units. This corresponds to high-level disinfection.
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APPENDIX

UVC (254 nm) radiation dose required for the inactivation of selected microorganisms and 
viruses (at room temperature, mWs cm-2)

Species

Inactivation - log10 units /
% Inactivation References

1 2 3 4 5
90 99 99.9 99.99 99.999

VEGETATIVE BACTERIA

Bacillus anthracis 1.2-28 8.7-42 8.7-56 2.6-70 15-84 (3), (44), (47), 
(67), (20)

Bacillus subtilis 3.7-12 6-18 9-14 11-15 13-18
(3), (44), (47), 
(63), (82), 
(103), (16)

Brucella melitensis 2.8-3.7 5.3-5.8 7.8 (75)
Brucella suis 1.7-2.7 3.6-5.3 5.6-7.9 7.5-10.5 (75)
Burkholderia mallei 1.0-1.2 2.4-2.7 3.8-4.1 5.2-5.5 (75)
Burkholderia pseudomallei 1.4-4.4 2.8-3.5 4.3-5.5 5.7-13 (75), (20)

Escherichia coli 1.3-5.1 2.8-10 4.1-16 5.0-28 7.7-36

(3), (4), (6), 
(8), (14), (17), 
(27), (36), 
(37), (41), 
(44), (47), 
(49), (60), 
(70), (83), 
(85), (92), 
(90), (91), 
(94), (95), 
(96), (104), 
(107), (84), 
(16)

Francisella tularensis 1.3-1.4 3.1-3.8 4.8-6.3 6.6-8.7 (75)

Klebsiella pneumoniae 15 11-31 29-39 (60), (96), 
(107)

Mycobacterium tuberculosis 0.5-2.3 1.0-6.0 1.5-10 2.0-13 2.4-17 (3), (25), (46), 
(47), (51)

Mycobacterium avium 5.7-6.4 7.9-9.4 10-12 12-24 (84), (38)
Mycobacterium intracellulare 7.4-7.8 11 13-15 16-19 (38)
Mycobacterium terrae 10.5 (50
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Proteus mirabilis 0.9 1.8 2.7 3.6 4.5 (41)

Pseudomonas aeruginosa 1.0-5.5 1.9-11 2.9 -17 3.9-22 4.8-28 (3), (44), (47), 
(51), (96)

Salmonella sp. 1.8-5.1 3.2-7.0 5.4-9.0 7.1-25 8.3-15

(3), (17), (44), 
(47), (49), 
(60), (95), 
(96), (104), 
(20)

Shigella sonnei 4 7.5 (20)

Staphylococcus aureus 1.9 -5.5 3.9-11 5.8-17 7.8-22 9.7-28 (3), (17), (18), 
(44), (47)

Vibrio cholerae 0.8-1.1 1.4-6.5 2.2-12 2.5-21 19
(3), (44), (47), 
(78), (95), 
(96), (20)

Yersinia enterocolitica 1.3 3.6-11 (20)
Yersinia pestis 1.3-1.4 2.2-2.6 3.2-3.7 4.1-4.9 (75)

BACTERIAL SPORES

Bacillus anthracis 74 149 223 297 371 (51)

Bacillus anthracis 25-28 ~40 56 62-70 84 (67), (75), 
(20)

Bacillus pumilus 20 (66)

Bacillus subtilis 9-39 17-38 22-58 29-80 36-121

(3), (17), (27), 
(44), (56), 
(32), (64), 
(67), (71), 
(73), (74), 
(82), (92), 
(89), (90), 
(103), (45), 
(20)

YEASTS

Candida albicans 7.6-12 11-17 15-22 18-27 22-32 (72)
Cryptococcus neoformans,
melanized 34 68 102 136 170 (100)

Cryptococcus neoformans,
non-pigmented 16 32 48 64 80 (100)
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FUNGAL SPORES

Aspergillus sp. 35-67 134 99-330 117-440 147-550 (35), (44), 
(47), (51)

Aspergillus fumigatus 54 108 162 216 270 (35)
Epidermophyton floccosum 120 (23)
Microsporum canis 120 (23)
Trichophyton mentagrophytes 120 (23)
Trichophyton rubrum 120 (23)

VIRUSES

Adenoviridae 27-49* (58)
Adenovirus 1 35 69 103 138 (69)

Adenovirus 2 40-61 78-109 119-163 160, 167 198
(27), (26), 
(33), (51), 
(86)

Adenovirus 2 30 50 80 (31)
Adenovirus 4 10 34 69 116 (34)
Adenovirus 5 216-240 305 (46), (99)
Adenovirus 6 39 77 115 154 (69)
Adenovirus 40 30 61 93 124 155 (62)
Adenovirus 41 24-75 53-111 82-175 112-222 141 (62), (50)

Arenaviridae 3.5* (58)
Astroviridae 10-12* (58)
Bunyaviridae 2.0-3.5* (58)

Caliciviridae 9.7-11* (58)
Canine calicivirus 20 (28)
Feline calicivirus 4.8 12 19 (28), (94)

Murine norovirus 25 30 (54)

Coronaviridae 0.7-1.1* (58)
SARS coronavirus 91 114-162 (29), (48)
Berne virus 5 (101)

Deltaviridae 22* (58)

Filoviridae 2.0* (58)

Flaviviridae 6.8-8.4* (58)

Hepadnaviridae 3.8-4.1* (58)
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Herpesviridae 3.5-7.0* (58)
Epstein Barr virus 16 - 23 (39)

Herpes simplex virus 1 3.7-10 7.4-20 11 24 37 (39), (76), 
(102)

Herpes simplex virus 2 0.4 0.7 11 13 (102)
Equine herpes virus 7.5 (101)

Orthomyxoviridae 2.0-3.0* (58)

Influenza A 1.8-2.5 1.3-8.2 2.0 3.3 (1), (13), (42), 
(77)

Papovaviridae 68-103* (58)

Polyomavirus 47 43-94 141 (53), (97), 
(52)

Simian virus 40 105-300 130-261 440 551

(2), (10), (11), 
(12), (21), 
(30), (46), 
(79), (80), 
(93)

Paramyxoviridae 3.0* (58)

Parvoviridae 2.1-3.2* (58)
Parvovirus H-1, hamster  
osteolytic virus 23 46 (22)

Porcine parvovirus ca. 83 (19)
Murine parvovirus <20

Picornaviridae 12-14* (58)

Coxsackievirus 6.9-15 14-23 20-43 30-58 41-72 (5), (33), (51), 
(95)

Echovirus 7.0-11 14-21 21-32 28-42 35-53 (33), (51)

Encephalomyocarditis virus 7.6 15 23 16-113 25-141 (15), (105), 
(9)

Foot-and-mouth disease virus 24 48 72 96 120 (68)

Hepatitis A virus 4.1-7.3 7.6-14 8.0-22 11-37 13-100

(3), (5), (19), 
(44), (47), 
(95), (98), 
(99)

Poliovirus 4.1-8 10-16 14-23 18-31 22-43

(3), (7), (17), 
(33), (37), 
(40) 
recalculated 
by (17), (44), 
(53), (59), 
(62), (92), 
(94), (95), 
(96), (43)

Rhinovirus "like 
polio" (42), (43)
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Poxviridae 1.8-4.3* (58)

Vaccinia virus 1.5-3.5 3.0-7.1 4.5-11 6.1 7.6 (51), (57), 
(76)

Reoviridae 19-32* (58)

Reovirus 17-26 35-53 52-102 70-74 87-170
(37), (51), 
(61), (99), 
(106)

Rotavirus 7.1-11 15-46 23-69 31-92 40-115

(3), (5), (17), 
(44), (47), 
(63), (87), 
(92), (95), 
(96)

Simian Rotavirus 29 58 87 117 (55)

Retroviridae 18-30* (58)
HTLV-III/LAV 200 360 (65), (81)
Rous sarcoma virus 300 (48)

Rhabdoviridae 0.9-1.2* (58)
Vesicular stomatitis virus 19 <75 (48), (24)
Rabies virus 5 (101)

Togaviridae 4.9-6.5* (58)
Sindbis virus 15-30 40 24-50 (99), (106)
Semliki forest virus 7.5 (101)
Venezuelan equine 
encephalomyelitis virus 22 33 (88)

* predicted dose range for entire virus family according to ref. (58).
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