Menu

Exploiting digital histology approaches to probe the pathophysiology of SARS-CoV-2 infection

Overview

COVID-19 is a complex multi-phase disease. In most people, an early innate immune response transitions into a broadly effective adaptive immune response that controls the virus. However, 20-30% of symptomatic patients require hospitalization, with ICU admission rates ranging from 4.9-11.5%, and overall fatality rates of around 0.5%. Long-term inflammation in patients receiving supportive care in ICU can lead to pulmonary fibrosis, representing a third phase of the disease.

The success of broad-acting immunosuppressants such as dexamethasone clearly demonstrates that while the immune system is involved in disease amelioration, it also causes disease exacerbation. Understanding what factors underpin the transition between each phase in the lungs, the site of primary infection, and other organs is required for full understanding of the pathophysiology of SARS CoV-2. Through various researches, our goal is to inform the optimal selection and scheduling of therapeutic approaches. To achieve this, we have undertaken a wide-ranging analysis of post-mortem samples from patients at the different stages of COVID-19 disease. Selected results will be presented during the talk.

The talk will also cover a range of digital pathology and tissue multiplexing techniques, discuss different in capabilities of specific research platforms and how they can be effectively combined to probe the biology of the tissue microenvironment.

Learning Objectives

  • Describe different techniques involved in molecular histology and how they integrate in a workflow.
  • Identify the pathophysiology of SARS-CoV2 infection in tissues, including related to viral replication and anti-viral immunity.
  • Demonstrate how digital image analyses (immunofluorescence, transcriptomic) can be utilized to determine features of microenvironmental immunity.

DON'T MISS OUT! SUBSCRIBE TO RESEARCH LINK TODAY TO GET QUATERLY UPDATES ON OUR LATEST LIFE SCIENCE ENDEAVOURS

Related Products

For research use only. Not for use in diagnostic procedures.

Leica Biosystems content is subject to the Leica Biosystems website terms of use, available at: Legal Notice. The content, including webinars, training presentations and related materials is intended to provide general information regarding particular subjects of interest to health care professionals and is not intended to be, and should not be construed as, medical, regulatory or legal advice. The views and opinions expressed in any third-party content reflect the personal views and opinions of the speaker(s)/author(s) and do not necessarily represent or reflect the views or opinions of Leica Biosystems, its employees or agents. Any links contained in the content which provides access to third party resources or content is provided for convenience only.

For the use of any product, the applicable product documentation, including information guides, inserts and operation manuals should be consulted. Leica Biosystems and the editors hereby disclaim any liability arising directly or indirectly from the use of the content, including from any drugs, devices, techniques or procedures described in the content.

Copyright © 2021 Leica Biosystems division of Leica Microsystems, Inc. and its Leica Biosystems affiliates. All rights reserved. LEICA and the Leica Logo are registered trademarks of Leica Microsystems IR GmbH.