Leica SM2500
Large Scale Heavy-Duty Sectioning System
and
Leica SP2600
Ultramilling Attachment
Leica SM2500 large-surface, heavy-duty sectioning system is the standard universal microtome for all sectioning applications involving hard and/or large-surface specimens.

Large specimens up to 250 x 200 mm and hard materials such as bones and teeth embedded in methyl-methacrylate can be sectioned. Typical medical research applications include the sectioning of whole organs such as brain or lung embedded in paraffin. The wide range of accessories, especially designed for paraffin, celloidine or resin embedded specimens make the Leica SM2500 the ideal instrument for both routine and research applications.

The Leica SM2500 can be fitted with the optional ultramilling attachment Leica SP2600. Ultramilling is a preparation technique which provides high-quality plane surfaces at lowest sectioning forces.

The precise photo position of the Leica SM2500 allows complete photo documentation of a defined stop position, making it possible to reconstruct a three-dimensional image of the specimen.

Ease of operation and versatility for comfortable large scale sectioning

At a glance...

- Easy-to-use heavy-duty sectioning system
- Fully motorized operation
- Programmable sectioning
- Maximum specimen size: 250 x 200 mm
- Maximum vertical stroke length : 70 mm
- Two selectable photo positions
- Three different modes of operation
- Choice of different specimen holders
- Choice of different knife holders
- Section counter, section thickness totalizer
- Programmable cutting window
- Programmable knife retraction value
- Specimen orientation (XY)
- Two selectable specimen stop positions
For the embedding with celloidine a variety of plastic embedding stages with rim and drain for the cutting fluids is used.

An aluminum embedding frame can be adjusted to prepare the specimen block in the optimum size.

The Leica SM2500 microtome can easily be configured to meet specific user requirements with a wide range of knife holders, knives and specimen holders.

Recommended Specimen holders and plates:

- For paraffin embedded specimens a variety of metal specimen stages is available.
- For the embedding with celloidine a variety of plastic embedding stages with rim and drain for the cutting fluids is used.
- An aluminum embedding frame can be adjusted to prepare the specimen block in the optimum size.
- The Leica SM2500 microtome can easily be configured to meet specific user requirements with a wide range of knife holders, knives and specimen holders.

Leica SM2500 Accessories Range

The Leica SM2500 microtome can easily be configured to meet specific user requirements with a wide range of knife holders, knives and specimen holders.

Recommended knife holders and knives:

A large variety of knife holders and knives is available to ensure the best possible cutting results.

For different embedding materials or specimen properties, specific knife types are required.

The higher the cutting forces, the more knife holder stability is needed to ensure reproducible thin sections.

Knife holder A

Knife holder A is the most stable knife holder. It is recommended for all hard specimens, such as resin embedded undecalcified bones and teeth. The knife is clamped along its length preventing vibration during sectioning. Different cutting edge angles are available made of steel or tungsten carbide. The choice of knife depends on the hardness of the specimen.

Appropriate knife: knives with 40\(^\circ\), 50\(^\circ\) or 60\(^\circ\) wedge angle

Knife holder B

Knife holder B is recommended for paraffin embedded soft tissue. The holder accommodates all standard knife sizes up to a length of 22 cm with c and d profiles. As an alternative disposable blades can be clamped using the Leica disposable blade holder for low profile blades with central pressure plate.

Appropriate knife: standard knives with c or d profile or blade holder for low profile blades

Knife holder C

The knife holder C is designed primarily for biological specimens embedded in paraffin or celloidine. The knives are secured over their entire length, thus preventing vibration during cutting. The small angle of the knife pressure plate facilitates the removal of sections without tearing. The high stability of this knife holder combined with the special Cc and Cd profile knives ensure optimal sectioning results.

Appropriate knife: Special knives with Cc and Cd profile

To reduce cutting forces an optional pair of special clamping blocks for permanent 45\(^\circ\) knife declination can be used to take advantage of the pulling sections effect. This technique is especially recommended for the sectioning of wood specimens. The clamping blocks are suitable for all three knife holders.

45\(^\circ\) knife declination

To reduce cutting forces an optional pair of special clamping blocks for permanent 45\(^\circ\) knife declination can be used to take advantage of the pulling sections effect. This technique is especially recommended for the sectioning of wood specimens. The clamping blocks are suitable for all three knife holders.

Two specimen clamps fit the base plate: an object clamp for 40 x 58 mm rectangular specimens or a round specimen clamp for specimens with 8, 15 or 25 mm in diameter.

Recommended knife holders and knives:

A large variety of knife holders and knives is available to ensure the best possible cutting results.

For different embedding materials or specimen properties, specific knife types are required.

The higher the cutting forces, the more knife holder stability is needed to ensure reproducible thin sections.

Knife holder A

Knife holder A is the most stable knife holder. It is recommended for all hard specimens, such as resin embedded undecalcified bones and teeth. The knife is clamped along its length preventing vibration during sectioning. Different cutting edge angles are available made of steel or tungsten carbide. The choice of knife depends on the hardness of the specimen.

Appropriate knife: knives with 40\(^\circ\), 50\(^\circ\) or 60\(^\circ\) wedge angle

Knife holder B

Knife holder B is recommended for paraffin embedded soft tissue. The holder accommodates all standard knife sizes up to a length of 22 cm with c and d profiles. As an alternative disposable blades can be clamped using the Leica disposable blade holder for low profile blades with central pressure plate.

Appropriate knife: standard knives with c or d profile or blade holder for low profile blades

Knife holder C

The knife holder C is designed primarily for biological specimens embedded in paraffin or celloidine. The knives are secured over their entire length, thus preventing vibration during cutting. The small angle of the knife pressure plate facilitates the removal of sections without tearing. The high stability of this knife holder combined with the special Cc and Cd profile knives ensure optimal sectioning results.

Appropriate knife: Special knives with Cc and Cd profile

45\(^\circ\) knife declination

To reduce cutting forces an optional pair of special clamping blocks for permanent 45\(^\circ\) knife declination can be used to take advantage of the pulling sections effect. This technique is especially recommended for the sectioning of wood specimens. The clamping blocks are suitable for all three knife holders.
The ideal combination for specimen surface preparation: Leica SM2500 with ultramilling attachment Leica SP2600

Ultramilling is often a viable alternative to standard microtomy and saw microtomy in sample preparation. Instead of preparing thin sections for transmitted light microscopy, a polished surface is prepared for examination under reflected light. Especially with difficult specimens, where hard and soft materials are located side by side in one specimen block, the results achieved are truly excellent. Impressive results of unmatched quality have also been achieved in bone and teeth specimen preparation. Using the ultramilling technique makes it possible to track the area of interest in depth as the surface layer can be removed in micrometer steps.

In addition to surface preparations for incident light investigation it is also possible to do thin preparations for transmitted light microscopy. For that purpose, a plane parallel specimen slice is prepared (e.g. using the Leica SP1600 saw microtome) and placed onto a vacuum table which keeps the slice in position during milling. Both sides of the slice are then milled until the desired thickness is reached.

The Ultramilling Principle:

Layer after layer of material, each layer of precisely the same thickness, is removed from a specimen block mounted onto a sledge travelling underneath a milling head consisting of a vertical, rotating spindle equipped with a diamond cutting tool on one and a balance weight on the other side. The surface preparation procedure consists of two different steps: a preparation step carried out with a pre-miller and a finishing step during which a mirror-like surface with excellent edge definition is obtained.

The pre-milling process:

The rotational speed of the spindle is adjustable from 500 to 3,000 rpm, the ideal speed in each case depending on the material being milled. Depending on the hardness of the material, material removal thickness can be adjusted starting from 1 µm per layer. To ensure high-quality final results the travelling speed of the sledge can also be adjusted according to the properties of each individual specimen being milled. A diamond cutting tool with a triangular cutting geometry is used for the pre-milling step, where the block is trimmed down to the area of interest. Under the microscope, a pre-milled block surface will show a regular saw-tooth like pattern due to the triangular geometry of the pre-miller.

The finishing step:

To obtain a smooth finished surface, the pre-miller is replaced by a finishing miller which removes the saw-tooth like pattern produced by the pre-miller leaving a perfectly even, mirror-like surface ready for investigation.
Applications

WOOD
Configuration: Leica SM2500, knife holder B, disposable blade holder base plate with vise, special clamping blocks for permanent 45° knife declination
Embedding Method: none
Parameter: approx. 15 µm section thickness, 2 mm/sec. cutting speed
Microscopical evaluation: magnification 20 x, transmitted light microscopy

BONE
Configuration: Leica SM2500, knife holder A, 40° tungsten carbide knife base plate with dovetail guide, specimen clamp
Embedding Method: Methylmethacrylate
Parameter: approx. 5 µm section thickness, 1.5 mm/sec. cutting speed
Microscopical evaluation: magnification 20 x, transmitted light microscopy

ROSEWOOD
Configuration: Leica SM2500, knife holder B, disposable blade holder base plate with dovetail guide, specimen clamp, special clamping blocks for permanent 45° knife declination
Embedding Method: none
Parameter: approx. 5 µm section thickness, 1.5 mm/sec. cutting speed
Microscopical evaluation: magnification 40 x, transmitted light microscopy

BRAIN
Configuration: Leica SM2500, knife holder B, disposable blade holder for low-profile disposable blades with central pressure plate, base plate with vise, metal specimen stage, aluminum embedding frame.
Embedding Method: Paraffin
Parameter: approx. 4 µm section thickness, H+E Stain
Microscopical evaluation: magnification 120 x, transmitted light microscopy

DENTAL SPECIMEN
Configuration: Leica SP1600
Embedding Method: none
Parameter: approx. 40 µm section thickness
Microscopical evaluation: magnification 20 x, transmitted light microscopy

BONE
Configuration: Leica SP2600
Embedding Method: Methylmethacrylate
Parameter: approx. 30 µm section thickness
Microscopical evaluation: magnification 50 x, reflecting light microscopy

LIVER
Configuration: Leica SM2500, knife holder C for special knives, base plate with vise, metal specimen stage, aluminum embedding frame, special knife, profile Cd, steel
Embedding Method: Paraffin
Parameter: approx. 4 µm section thickness, H+E Stain
Microscopical evaluation: magnification 70, transmitted light microscopy

References
* R.C. Curran, Atlas of Histopathology, 1985, Harvey Miller
** Sobotta Hammerson, Histologie, 4. Auflage/1994, Urban & Schwarzenberg
Leica SM2500 – Technical Specifications

Microtome:
- Section thickness range: 0 - 1,000 µm, adjustable in 1-µm steps
- Total horizontal specimen stroke: maximum 275 mm
- Total vertical knife feed: 70 mm
- Knife retraction (during specimen return stroke): 0 - 1,000 µm
- Clearance angle adjustment: 0° - 17°
- Knife declination - fixed setting (declination blocks = optional accessory): 45°
- Maximum specimen size (LxWxH): 250x200x70 mm
- Specimen orientation (along x/y axis): 4.8° along each axis
- Specimen orientation (rotation): approx. ±3° and ±90°
- Sectioning speed: 0.5 - 100 mm/s, adjustable in 0.1 mm steps
- Return speed: 0.5 - 100 mm/s, adjustable in 0.1 mm steps
- Manual knife movement (slow/fast): 37 mm/s and 74 mm/s
- Manual specimen movement (slow/fast): 37 mm/s and 74 mm/s

Electrical connections:
- Nominal voltage: 100 / 120 / 230 / 240 V
- Nominal frequency: 50 Hz and 60 Hz
- Maximum power draw: 1,400 VA
- Main fuses, type MDA, Fa. Bussmann: 2 x T10A
- Protective class: I
- Overvoltage installation category: II
- Vacuum cleaner: 100 / 120 V - maximum power draw 500 VA
- Vacuum cleaner: 230 / 240 V - maximum power draw 1,200 VA
- Lamp: 100 / 120 V - maximum power draw 100 W
- Lamp: 230 / 240 V - maximum power draw 200 W

Dimensions and weights:
- Microtome (H x W x L): 250 x 390 x 750 mm
- Control unit (H x W x D): 220 x 385 x 510 mm
- Required bench top space for microtome and control unit: 1,000 x 950 mm
- Microtome: approx. 75 kg
- Control unit: approx. 23 kg

Ultramilling attachment:
- Milling spindle (special design): type TSAV 60 x 160
- Motor, rotation speed selectable in 100-rpm steps: 500 to 3,000 rpm
- Protective class: I
- Pollution degree: 2

Dimensions and weight – Ultramilling attachment:
- Dimensions (H x W x D): 300 x 315 x 240 mm
- Weight: 18 kg

These specifications are supplemented by the specifications contained in the Leica SM2500 instruction manual.

Leica SP2600 – Technical Specifications

Ultramilling attachment:
- Milling spindle (special design): type TSAV 60 x 160
- Motor, rotation speed selectable in 100-rpm steps: 500 to 3,000 rpm
- Protective class: I
- Pollution degree: 2

Dimensions and weight:
- Dimensions (H x W x D): 300 x 315 x 240 mm
- Weight: 18 kg

These specifications are supplemented by the specifications contained in the Leica SM2500 instruction manual.

As a pre-preparation instrument for the Leica SM2500 with the milling attachment Leica SP2600, the Leica SP1600 saw microtome is specially designed for the cutting of extremely hard and brittle materials such as bones or teeth embedded in methylmethacrylate.

The specimen is clamped in the center of a diamond-coated internal-hole saw and pushed by a spring mechanism against the saw blade which rotates horizontally at a speed of 600 rpm, producing specimen slices of the desired thickness. Under optimum conditions section thickness of approx. 30 µm can be achieved. A built-in water cooling system prevents overheating of the specimen and removes saw dust.

Slices of very hard materials can be prepared with the Leica SP1600 without destroying the morphology of the specimens thus facilitating light microscopical investigation.

Comparison of Sectioning versus Sawing Technique

When sectioning with a sliding or rotary microtome, serial sections are possible, there is no material loss, but due to the cutting angle of knife - the sample is subject to compression during sectioning.

When using a saw microtome for pre-preparation serial sections are not possible. In addition there is some loss of material due to the thickness of the saw blade. The huge advantage of saw microtomy is that, compared to the sectioning principle, it causes effectively no compression of the slice. Any deformation and damage of the specimen is avoided because the radial load is kept on an extremely low level.
Leica Microsystems – the brand for outstanding products

Leica Microsystems’ mission is to be the world’s first-choice provider of innovative solutions to our customers’ needs for vision, measurement, lithography and analysis of microstructures.

Leica, the leading brand for microscopes and scientific instruments, developed from five brand names, all with a long tradition: Wild, Leitz, Reichert, Jung and Cambridge Instruments. Yet Leica symbolizes innovation as well as tradition.

Leica Microsystems – an international company with a strong network of customer services

and representatives of Leica Microsystems in more than 100 countries.

The companies of the Leica Microsystems Group operate internationally in five business segments, where we rank with the market leaders.

Microscopy
Our expertise in microscopy is the basis for all our solutions for visualization, measurement and analysis of microstructures in life sciences and industry.

Specimen Preparation
We provide comprehensive systems and services for clinical histo- and cytopathology applications, biomedical research and industrial quality assurance. Our product range includes instruments, systems and consumables for tissue infiltration and embedding, microtomes and cryostats as well as automated stainers and coverslippers.

Imaging Systems
With confocal laser technology and image analysis systems, we provide three-dimensional viewing facilities and offer new solutions for cytogenetics, pathology and materials sciences.

Medical Equipment
Innovative technologies in our surgical microscopes offer new therapeutic approaches in microsurgery. With automated instruments for ophthalmology, we enable new diagnostic methods to be applied.

Semiconductor Equipment
Our automated, leading-edge measurement and inspection systems and our E-beam lithography systems make us the first choice supplier for semiconductor manufacturers all over the world.

www.histo-solutions.com