Impact One Stereotaxic myneurolab

Impact One for Reproducible Neurotrauma

Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice. Yi, J. H., Katagiri, Y., Susarla, B., Figge, D., Symes, A. J., & Geller, H. M. (2012). Journal of comparative neurology, 520(15), 3295-3313. 

TGF-β superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury. Logan, T. T., Villapol, S., & Symes, A. J. (2013). PloS one, 8(3), e59250. 

Administration of palmitoylethanolamide (PEA) protects the neurovascular unit and reduces secondary injury after traumatic brain injury in mice. Ahmad, A., Crupi, R., Impellizzeri, D., Campolo, M., Marino, A., Esposito, E., & Cuzzocrea, S. (2012). Brain, behavior, and immunity, 26(8), 1310-1321. 

Far-red tracer analysis of traumatic cerebrovascular permeability. Liao, G. P., Olson, S. D., Kota, D. J., Hetz, R. A., Smith, P., Bedi, S., & Cox, C. S. (2014). Journal of Surgical Research, 190(2), 628-633. 

Controlled cortical impact results in an extensive loss of dendritic spines that is not mediated by injury-induced amyloid-beta accumulation. Winston, C. N., Chellappa, D., Wilkins, T., Barton, D. J., Washington, P. M., Loane, D. J., ... & Burns, M. P. (2013). Journal of neurotrauma, 30(23), 1966-1972. 

Donepezil Rescues Spatial Learning and Memory Deficits following Traumatic Brain Injury Independent of Its Effects on Neurogenesis. Yu, T. S., Kim, A., & Kernie, S. G. (2015). PloS one, 10(2), e0118793.

Controlled cortical impact and craniotomy induce strikingly similar profiles of inflammatory gene expression, but with distinct kinetics.  Lagraoui, M., Latoche, J. R., Cartwright, N. G., Sukumar, G., Dalgard, C. L., & Schaefer, B. C. (2015). Towards translating research to clinical practice: Novel Strategies for Discovery and Validation of Biomarkers for Brain Injury, 150. 

Transition from Initial Hypoactivity to Hyperactivity in Cortical Layer V Pyramidal Neurons after Traumatic Brain Injury In Vivo. Ping, X., & Jin, X. (2015). Journal of neurotrauma. 

Immunomagnetic enrichment and flow cytometric characterization of mouse microglia. Bedi, S. S., Smith, P., Hetz, R. A., Xue, H., & Cox, C. S. (2013).Journal of neuroscience methods, 219(1), 176-182. 

Post-injury treatment of 7, 8-dihydroxyflavone promotes neurogenesis in the hippocampus of the adult mouse. Zhao, S., Yu, A., Wang, X., Gao, X., & Chen, J. (2015). Journal of neurotrauma, (ja). 

Cortical contusion injury disrupts olfactory bulb neurogenesis in adult mice. Radomski, K. L., Zhou, Q., Kevin, J. Y., & Doughty, M. L. (2013). BMC neuroscience, 14(1), 142. 

Neuroprotective effects of Co-ultraPEALut on secondary inflammatory process and autophagy involved in traumatic brain injury. Cordaro, M., Impellizzeri, D., Paterniti, I., Bruschetta, G., Siracusa, R., De Stefano, D., ... & Esposito, E. (2016). Journal of neurotrauma, 33(1), 132-146. 

Progesterone treatment shows benefit in a pediatric model of moderate to severe bilateral brain injury. Geddes, R. I., Sribnick, E. A., Sayeed, I., & Stein, D. G. (2014). PloS one, 9(1), e87252. 

Temporal patterns of cortical proliferation of glial cell populations after traumatic brain injury in mice. Susarla, B. T., Villapol, S., Yi, J. H., Geller, H. M., & Symes, A. J. (2014). ASN neuro, 6(3), AN20130034. 

Cerebral vasoactivity and oxygenation with oxygen carrier M101 in rats. Moon-Massat, P., Mullah, S. H., Abutarboush, R., Saha, B. K., Pappas, G., Haque, A., ... & Scultetus, A. (2015).  Journal of neurotrauma, (ja). 

Glia, Scratch wound assay, Large animal model, Human NT-2 neurons, Regeneration. Radomski, K. L., Zhou, Q., Kevin, J. Y., & Doughty, M. L. (2013). BMC Neuroscience, 14(1). 

A Contusion Model of Severe Spinal Cord Injury in Rats.  Vibhor Krishna, Hampton Andrews, Xing Jin, Jin Yu, Abhay Varma, Xuejun Wen and Mark Kindy. Journal of Visualized Experiments (JOVE, VIDEO) 78: 50111, 2013.

Long-term cognitive impairments and pathological alterations in a mouse model of repetitive mild traumatic brain injury. Jian Luo, Andy Nguyen, Saul Villeda1, Hui Zhang1 Zhaoqing Ding, Derek Lindsey, Gregor Bieri, Joseph M. Castellano, Gary S. Beaupre and TonyWyss-Coray. Frontiers of Neurology. doi: 10.3389/fneur.2014.00012

Decompressive Craniectomy Reduces White Matter Injury after Controlled Cortical Impact in Mice.  Friess Stuart H., Lapidus Jodi B., and Brody David L. Journal of Neurotrauma. June 1, 2015, 32(11): 791-800. doi:10.1089/neu.2014.3564.

Acute Reduction of Microglia Does Not Alter Axonal Injury in a Mouse Model of Repetitive Concussive Traumatic Brain Injury. Rachel E. Bennett and David L. Brody.  Journal of Neurotrauma, Vol. 31, No. 19, October 2014: 1647-1663.

Deficits in Discrimination after Experimental Frontal Brain Injury Are Mediated by Motivation and Can Be Improved by Nicotinamide Administration. Vonder Haar Cole, Maass William R., Jacobs Eric A., and Hoane Michael R.. Journal of Neurotrauma. October 15, 2014, 31(20): 1711-1720. doi:10.1089/neu.2014.3459.

Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes. Mouzon BC, Chaytow H, Crynen G, Bachmeier C, Stewart JE, Mullan M, Stewart W, Crawford FC. J Neurotrauma. 2012 Aug 17.

Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. Shitaka Y, Tran HT, Bennett RE, Sanchez L, Levy MA, Dikranian K, Brody DL. Neuropathol Exp Neurol. 2011 Jul;70(7):551-67.

Chronic upregulation of activated microglia immunoreactive for galectin-3/Mac-2 and nerve growth factor following diffuse axonal injury. Venkatesan C, Chrzaszcz M, Choi N, Wainwright MS. J Neuroinflammation. 2010 May 27;7:32.

Electromagnetic Controlled Cortical Impact Device for Precise, Graded Experimental Traumatic Brain Injury David L. Brody, Christine Mac Donald, Chad C. Kessens, Carla Yuede, Maia Parsadanian, Mike Spinner, Eddie Kim, Katherine E. Schwetye, David M. Holtzman, and Philip V. Bayly. Journal of Neurotrauma. April 2007, 24(4): 657-673. doi:10.1089/neu.2006.0011.

Traumatic Brain Injury in Young Rats Leads to Progressive Behavioral Deficits Coincident with Altered Tissue Properties in Adulthood. David O. Ajao, Viorela Pop, Joel E. Kamper, Arash Adami, Emil Rudobeck, Lei Huang, Roman Vlkolinsky, Richard E. Hartman, Stephen Ashwal, André Obenaus, and Jérôme Badaut. Journal of Neurotrauma. July 20, 2012, 29(11): 2060-2074. doi:10.1089/neu.2011.1883.

Chronic neuropathological and neurobehavioral changes in a repetitive mTBI model. Benoit C. Mouzon, Corbin Bachmeier, Austin Ferro, Joseph Ojo, Cogce Crynen, Christopher M. Acker, Peter Davies, Michael Mullan, William Stewart, Fiona Crawford. Annals of Neurology, 2013. DOI: 10.1002/ana.24064

Repetitive mild traumatic brain injury augments tau pathology and glial activation in aged h Tau mice. Ojo, J.O., Mouzon, B., Greenberg, M.B., Bachmeier, C., Mulian, M., Crawford, F. J. Neuropathol. Exp. Neurol, 2013. doi: 10.1097/NEN.0b013e3182814cdf.

The Effect of Injury Severity on Behavior: A Phenotypic Study of Cognitive and Emotional Deficits after Mild, Moderate, and Severe Controlled Cortical Impact Injury in Mice. Patricia M. Washington, Patrick A. Forcelli, Tiffany Wilkins, David N. Zapple, Maia Parsadanian, and Mark P. Burns. Journal of Neurotrauma, Vol. 29, No. 13, September 2012: 2283-2296.

Effect of treadmill exercise on Purkinje cell loss and astrocytic reaction in the cerebellum after traumatic brain injury. Tae-Beom Seo, Bo-Kyun Kim, Il-Gyu Ko, Dong-Hyun Kim, Mal-Soon Shin, Chang-Ju Kim, Jin-Hwan Yoon, Hong Kim. Neuroscience Letters Volume 481, Pages 178–182, 2010

Treadmill exercise inhibits traumatic brain injury-induced hippocampal apoptosis. Dong-Hyun Kim, Il-Gyu Ko, Bo-Kyun Kim, Tae-Woon Kim, Sung-Eun Kim, Mal-Soon Shin, Chang-Ju Kim, Hong Kim, Kyeong-Mi Kim, Seung-Soo Baek. Physiology & Behavior Volume 101, 2010, Pages 660–665

Moderate Traumatic Brain Injury Causes Acute Dendritic and Synaptic Degeneration in the Hippocampal Dentate Gyrus. Gao X, Deng P, Xu ZC, Chen J PLoS ONE 6(9): e24566. doi:10.1371/journal.pone.0024566

Neuronal Deletion of Caspase 8 Protects against Brain Injury in Mouse Models of Controlled Cortical Impact and Kainic Acid-Induced Excitotoxicity. Krajewska M, You Z, Rong J, Kress C, Huang X, et al. PLoS ONE 6(9): e24341. doi:10.1371/journal.pone.0024341

Impact of arginase II on CBF in experimental cortical impact injury in mice using MRI. Brittany R Bitner, Danielle C Brink, Leela C Mathew, Robia G Pautler, and Claudia S Robertson Journal of Cerebral Blood Flow & Metabolism (2010) 30, 1105–1109; doi:10.1038/jcbfm.2010.47;

COG1410 Improves Cognitive Performance and Reduces Cortical Neuronal Loss in the Traumatically Injured Brain. Michael R. Hoane, Nicholas Kaufman, Michael P. Vitek, and Suzanne E. McKenna. Journal of Neurotrauma. January 2009, 26(1): 121-129. doi:10.1089/neu.2008.0565

Zinc supplementation provides behavioral resiliency in a rat model of traumatic brain injury. Elise C. Cope, Deborah R. Morris, Angus G. Scrimgeour, Jacob W. VanLandingham, Cathy W. Levenson Physiology & Behavior Volume 104, Issue 5, 24 October 2011, Pages 942–947.

The Novel Apolipoprotein E–Based Peptide COG1410 Improves Sensorimotor Performance and Reduces Injury Magnitude following Cortical Contusion Injury. Michael R. Hoane, Jeremy L. Pierce, Michael A. Holland, Nicholas D. Birky, Tan Dang, Michael P. Vitek, and Suzanne E. McKenna. Journal of Neurotrauma. July 2007, 24(7): 1108-1118. doi:10.1089/neu.2006.0254.

Spontaneous Epileptiform Activity in Rat Neocortex after Controlled Cortical Impact Injury. Lie Yang, Sonia Afroz, Hillary B. Michelson, Jeffrey H. Goodman, Helen A. Valsamis, and Douglas S.F. Ling. Journal of Neurotrauma. 2010, 27(8): 1541-1548. doi:10.1089/neu.2009.1244.

Diffusion Tensor Imaging Reliably Detects Experimental Traumatic Axonal Injury and Indicates Approximate Time of Injury. Christine L. Mac Donald, Krikor Dikranian, Philip Bayly, David Holtzman, and David Brody. The Journal of Neuroscience, 31 October 2007, 27(44): 11869-11876; doi: 10.1523/​JNEUROSCI.3647-07.2007

The effects of a high-fat sucrose diet on functional outcome following cortical contusion injury in the rat. Michael R. Hoane, Alicia A. Swan, Sarah E. Heck Behavioural Brain Research Volume 223, Issue 1, 30 September 2011, Pages 119–124

Amyloid Precursor Protein Revisited NEURON-SPECIFIC EXPRESSION AND HIGHLY STABLE NATURE OF SOLUBLE DERIVATIVES Qinxi Guo, Hongmei Li, Samson S. K. Gaddam, Nicholas J. Justice, Claudia S. Robertson and Hui Zheng The Journal of Biological Chemistry, 287, 2437-2445, 2012

Research Chronic upregulation of activated microglia immunoreactive for galectin-3/Mac-2 and nerve growth factor following diffuse axonal injury. Charu Venkatesan, MaryAnn Chrzaszcz, Nicole Choi, and Mark S Wainwright. Journal of Neuroinflammation 2010, 7:32

Nicotinamide treatment induces behavioral recovery when administered up to 4 hours following cortical contusion injury in the rat. M.R. Hoane, J.L. Pierce, M.A. Holland, G.D. Anderson Neuroscience Volume 154, Issue 3, 26 June 2008, Pages 861–868

Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons. K. Dikranian, R. Cohen, C. Mac Donald, Y. Pan, D. Brakefield, P. Bayly,A. Parsadanian Experimental Neurology Volume 211, Issue 2, June 2008, Pages 551–560

The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Yuan Hong, Wei Yan, Sheng Chen, Chong-ran Sun and Jian-min Zhang. Acta Pharmacologica Sinica (2010) 31: 1421–1430; doi: 10.1038/aps.2010.101; published online 18 Oct 2010

Contribution of Ih to Neuronal Damage in the Hippocampus after Traumatic Brain Injury in Rats. Ping Deng and Zao C. Xu and. Journal of Neurotrauma. July 2011, 28(7): 1173-1183. doi:10.1089/neu.2010.1683.

Alterations of A-Type Potassium Channels in Hippocampal Neurons after Traumatic Brain Injury. Zhigang Lei, Ping Deng, Jinqing Li, and Zao C. Xu. Journal of Neurotrauma. -Not available-, ahead of print. doi:10.1089/neu.2010.1537.

Sustained delivery of nicotinamide limits cortical injury and improves functional recovery following traumatic brain injury. Andrea M Goffus, Gail D Anderson, and Michael R Hoane. Oxid Med Cell Longev. 2010 Mar-Apr; 3(2): 145–152. doi: 10.4161/oxim.3.2.8

Variation in chronic nicotinamide treatment after traumatic brain injury can alter components of functional recovery independent of histological damage. Michael R. Hoane, Jeremy L. Pierce, Nicholas A. Kaufman and Jason E. Beare Oxidative Medicine and Cellular Longevity 1:1, 46-53; 2008

Minocycline Synergizes with N-Acetylcysteine and Improves Cognition and Memory Following Traumatic Brain Injury in Rats. Samah G. Abdel Baki, Ben Schwab, Margalit Haber, André A. Fenton, Peter J. Bergold PLoS ONE 5(8): e12490. doi:10.1371/journal.pone.0012490

Spatiotemporal evolution of apoptotic neurodegeneration following traumatic injury to the developing rat brain. Philip V. Bayly, Krikor T. Dikranian, Erin E. Black, Chainllie Young, Yue-Qin Qin, Joann Labruyere, John W. Olney. Brain Research Volume 1107, Issue 1, 30 August 2006, Pages 70–81

Preclinical Efficacy Testing in Middle-Aged Rats: Nicotinamide, a Novel Neuroprotectant, Demonstrates Diminished Preclinical Efficacy after Controlled Cortical Impact. Alicia A. Swan, Rupa Chandrashekar, Jason Beare, and Michael R. Hoane. Journal of Neurotrauma. March 2011, 28(3): 431-440. doi:10.1089/neu.2010.1519.

Continuous nicotinamide administration improves behavioral recovery and reduces lesion size following bilateral frontal controlled cortical impact injury. Cole Vonder Haar, Gail D. Anderson, Michael R. Hoane Behavioural Brain Research Volume 224, Issue 2, 31 October 2011, Pages 311–317

Endoplasmic reticulum protein BI-1 modulates unfolded protein response signaling and protects against stroke and traumatic brain injury. Maryla Krajewska, Lucy Xu, Wenjie Xu, Stan Krajewski, Christina L. Kress, Jiankun Cui, Li Yang, Fumitoshi Irie, Yu Yamaguchi, Stuart A. Lipton, John C. Reed Brain Research Volume 1370, 25 January 2011, Pages 227–237

Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. C.L. Mac Donald, K. Dikranian, S.K. Song, P.V. Bayly, D.M. Holtzmanb, D.L. Brody. Experimental Neurology Volume 205, Issue 1, May 2007, Pages 116–131

The Effect of Progesterone Dose on Gene Expression after Traumatic Brain Injury. Gail D. Anderson, Federico M. Farin, Theo K. Bammler, Richard P. Beyer, Alicia A. Swan, Hui-Wen Wilkerson, Eric D. Kantor, and Michael R. Hoane. Journal of Neurotrauma. September 2011, 28(9): 1827-1843. doi:10.1089/neu.2011.1911.